| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq2 |
|- ( C = (/) -> ( A e. C <-> A e. (/) ) ) |
| 2 |
|
noel |
|- -. A e. (/) |
| 3 |
2
|
pm2.21i |
|- ( A e. (/) -> ( A +o B ) e. C ) |
| 4 |
1 3
|
biimtrdi |
|- ( C = (/) -> ( A e. C -> ( A +o B ) e. C ) ) |
| 5 |
4
|
com12 |
|- ( A e. C -> ( C = (/) -> ( A +o B ) e. C ) ) |
| 6 |
5
|
adantr |
|- ( ( A e. C /\ B e. C ) -> ( C = (/) -> ( A +o B ) e. C ) ) |
| 7 |
|
simpl |
|- ( ( A e. C /\ B e. C ) -> A e. C ) |
| 8 |
|
simpl |
|- ( ( C = ( _om ^o D ) /\ D e. On ) -> C = ( _om ^o D ) ) |
| 9 |
|
simpr |
|- ( ( C = ( _om ^o D ) /\ D e. On ) -> D e. On ) |
| 10 |
|
omelon |
|- _om e. On |
| 11 |
9 10
|
jctil |
|- ( ( C = ( _om ^o D ) /\ D e. On ) -> ( _om e. On /\ D e. On ) ) |
| 12 |
|
oecl |
|- ( ( _om e. On /\ D e. On ) -> ( _om ^o D ) e. On ) |
| 13 |
11 12
|
syl |
|- ( ( C = ( _om ^o D ) /\ D e. On ) -> ( _om ^o D ) e. On ) |
| 14 |
8 13
|
eqeltrd |
|- ( ( C = ( _om ^o D ) /\ D e. On ) -> C e. On ) |
| 15 |
14
|
adantl |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o D ) /\ D e. On ) ) -> C e. On ) |
| 16 |
|
onelon |
|- ( ( C e. On /\ A e. C ) -> A e. On ) |
| 17 |
16
|
expcom |
|- ( A e. C -> ( C e. On -> A e. On ) ) |
| 18 |
17
|
adantr |
|- ( ( A e. C /\ B e. C ) -> ( C e. On -> A e. On ) ) |
| 19 |
18
|
adantr |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o D ) /\ D e. On ) ) -> ( C e. On -> A e. On ) ) |
| 20 |
15 19
|
jcai |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o D ) /\ D e. On ) ) -> ( C e. On /\ A e. On ) ) |
| 21 |
|
simpr |
|- ( ( A e. C /\ B e. C ) -> B e. C ) |
| 22 |
21
|
adantr |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o D ) /\ D e. On ) ) -> B e. C ) |
| 23 |
|
oaordi |
|- ( ( C e. On /\ A e. On ) -> ( B e. C -> ( A +o B ) e. ( A +o C ) ) ) |
| 24 |
20 22 23
|
sylc |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o D ) /\ D e. On ) ) -> ( A +o B ) e. ( A +o C ) ) |
| 25 |
|
oveq1 |
|- ( x = A -> ( x +o C ) = ( A +o C ) ) |
| 26 |
25
|
eliuni |
|- ( ( A e. C /\ ( A +o B ) e. ( A +o C ) ) -> ( A +o B ) e. U_ x e. C ( x +o C ) ) |
| 27 |
7 24 26
|
syl2an2r |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o D ) /\ D e. On ) ) -> ( A +o B ) e. U_ x e. C ( x +o C ) ) |
| 28 |
|
simpr |
|- ( ( ( C = ( _om ^o D ) /\ D e. On ) /\ x e. C ) -> x e. C ) |
| 29 |
8
|
adantr |
|- ( ( ( C = ( _om ^o D ) /\ D e. On ) /\ x e. C ) -> C = ( _om ^o D ) ) |
| 30 |
28 29
|
eleqtrd |
|- ( ( ( C = ( _om ^o D ) /\ D e. On ) /\ x e. C ) -> x e. ( _om ^o D ) ) |
| 31 |
14
|
adantr |
|- ( ( ( C = ( _om ^o D ) /\ D e. On ) /\ x e. C ) -> C e. On ) |
| 32 |
8
|
eqcomd |
|- ( ( C = ( _om ^o D ) /\ D e. On ) -> ( _om ^o D ) = C ) |
| 33 |
|
ssid |
|- C C_ C |
| 34 |
32 33
|
eqsstrdi |
|- ( ( C = ( _om ^o D ) /\ D e. On ) -> ( _om ^o D ) C_ C ) |
| 35 |
34
|
adantr |
|- ( ( ( C = ( _om ^o D ) /\ D e. On ) /\ x e. C ) -> ( _om ^o D ) C_ C ) |
| 36 |
|
oaabs2 |
|- ( ( ( x e. ( _om ^o D ) /\ C e. On ) /\ ( _om ^o D ) C_ C ) -> ( x +o C ) = C ) |
| 37 |
30 31 35 36
|
syl21anc |
|- ( ( ( C = ( _om ^o D ) /\ D e. On ) /\ x e. C ) -> ( x +o C ) = C ) |
| 38 |
37 33
|
eqsstrdi |
|- ( ( ( C = ( _om ^o D ) /\ D e. On ) /\ x e. C ) -> ( x +o C ) C_ C ) |
| 39 |
38
|
iunssd |
|- ( ( C = ( _om ^o D ) /\ D e. On ) -> U_ x e. C ( x +o C ) C_ C ) |
| 40 |
|
peano1 |
|- (/) e. _om |
| 41 |
|
oen0 |
|- ( ( ( _om e. On /\ D e. On ) /\ (/) e. _om ) -> (/) e. ( _om ^o D ) ) |
| 42 |
11 40 41
|
sylancl |
|- ( ( C = ( _om ^o D ) /\ D e. On ) -> (/) e. ( _om ^o D ) ) |
| 43 |
42 32
|
eleqtrd |
|- ( ( C = ( _om ^o D ) /\ D e. On ) -> (/) e. C ) |
| 44 |
|
simpr |
|- ( ( ( C = ( _om ^o D ) /\ D e. On ) /\ x = (/) ) -> x = (/) ) |
| 45 |
44
|
oveq1d |
|- ( ( ( C = ( _om ^o D ) /\ D e. On ) /\ x = (/) ) -> ( x +o C ) = ( (/) +o C ) ) |
| 46 |
|
oa0r |
|- ( C e. On -> ( (/) +o C ) = C ) |
| 47 |
14 46
|
syl |
|- ( ( C = ( _om ^o D ) /\ D e. On ) -> ( (/) +o C ) = C ) |
| 48 |
47
|
adantr |
|- ( ( ( C = ( _om ^o D ) /\ D e. On ) /\ x = (/) ) -> ( (/) +o C ) = C ) |
| 49 |
45 48
|
eqtrd |
|- ( ( ( C = ( _om ^o D ) /\ D e. On ) /\ x = (/) ) -> ( x +o C ) = C ) |
| 50 |
49
|
sseq2d |
|- ( ( ( C = ( _om ^o D ) /\ D e. On ) /\ x = (/) ) -> ( C C_ ( x +o C ) <-> C C_ C ) ) |
| 51 |
|
ssidd |
|- ( ( C = ( _om ^o D ) /\ D e. On ) -> C C_ C ) |
| 52 |
43 50 51
|
rspcedvd |
|- ( ( C = ( _om ^o D ) /\ D e. On ) -> E. x e. C C C_ ( x +o C ) ) |
| 53 |
|
ssiun |
|- ( E. x e. C C C_ ( x +o C ) -> C C_ U_ x e. C ( x +o C ) ) |
| 54 |
52 53
|
syl |
|- ( ( C = ( _om ^o D ) /\ D e. On ) -> C C_ U_ x e. C ( x +o C ) ) |
| 55 |
39 54
|
eqssd |
|- ( ( C = ( _om ^o D ) /\ D e. On ) -> U_ x e. C ( x +o C ) = C ) |
| 56 |
55
|
adantl |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o D ) /\ D e. On ) ) -> U_ x e. C ( x +o C ) = C ) |
| 57 |
27 56
|
eleqtrd |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = ( _om ^o D ) /\ D e. On ) ) -> ( A +o B ) e. C ) |
| 58 |
57
|
ex |
|- ( ( A e. C /\ B e. C ) -> ( ( C = ( _om ^o D ) /\ D e. On ) -> ( A +o B ) e. C ) ) |
| 59 |
6 58
|
jaod |
|- ( ( A e. C /\ B e. C ) -> ( ( C = (/) \/ ( C = ( _om ^o D ) /\ D e. On ) ) -> ( A +o B ) e. C ) ) |
| 60 |
59
|
imp |
|- ( ( ( A e. C /\ B e. C ) /\ ( C = (/) \/ ( C = ( _om ^o D ) /\ D e. On ) ) ) -> ( A +o B ) e. C ) |