Metamath Proof Explorer


Theorem oaabs2

Description: The absorption law oaabs is also a property of higher powers of _om . (Contributed by Mario Carneiro, 29-May-2015)

Ref Expression
Assertion oaabs2 A ω 𝑜 C B On ω 𝑜 C B A + 𝑜 B = B

Proof

Step Hyp Ref Expression
1 n0i A ω 𝑜 C ¬ ω 𝑜 C =
2 fnoe 𝑜 Fn On × On
3 fndm 𝑜 Fn On × On dom 𝑜 = On × On
4 2 3 ax-mp dom 𝑜 = On × On
5 4 ndmov ¬ ω On C On ω 𝑜 C =
6 1 5 nsyl2 A ω 𝑜 C ω On C On
7 6 ad2antrr A ω 𝑜 C B On ω 𝑜 C B ω On C On
8 oecl ω On C On ω 𝑜 C On
9 7 8 syl A ω 𝑜 C B On ω 𝑜 C B ω 𝑜 C On
10 simplr A ω 𝑜 C B On ω 𝑜 C B B On
11 simpr A ω 𝑜 C B On ω 𝑜 C B ω 𝑜 C B
12 oawordeu ω 𝑜 C On B On ω 𝑜 C B ∃! x On ω 𝑜 C + 𝑜 x = B
13 9 10 11 12 syl21anc A ω 𝑜 C B On ω 𝑜 C B ∃! x On ω 𝑜 C + 𝑜 x = B
14 reurex ∃! x On ω 𝑜 C + 𝑜 x = B x On ω 𝑜 C + 𝑜 x = B
15 13 14 syl A ω 𝑜 C B On ω 𝑜 C B x On ω 𝑜 C + 𝑜 x = B
16 simpll A ω 𝑜 C B On ω 𝑜 C B A ω 𝑜 C
17 onelon ω 𝑜 C On A ω 𝑜 C A On
18 9 16 17 syl2anc A ω 𝑜 C B On ω 𝑜 C B A On
19 18 adantr A ω 𝑜 C B On ω 𝑜 C B x On A On
20 9 adantr A ω 𝑜 C B On ω 𝑜 C B x On ω 𝑜 C On
21 simpr A ω 𝑜 C B On ω 𝑜 C B x On x On
22 oaass A On ω 𝑜 C On x On A + 𝑜 ω 𝑜 C + 𝑜 x = A + 𝑜 ω 𝑜 C + 𝑜 x
23 19 20 21 22 syl3anc A ω 𝑜 C B On ω 𝑜 C B x On A + 𝑜 ω 𝑜 C + 𝑜 x = A + 𝑜 ω 𝑜 C + 𝑜 x
24 7 simprd A ω 𝑜 C B On ω 𝑜 C B C On
25 eloni C On Ord C
26 24 25 syl A ω 𝑜 C B On ω 𝑜 C B Ord C
27 ordzsl Ord C C = x On C = suc x Lim C
28 26 27 sylib A ω 𝑜 C B On ω 𝑜 C B C = x On C = suc x Lim C
29 simplll A ω 𝑜 C B On ω 𝑜 C B C = A ω 𝑜 C
30 oveq2 C = ω 𝑜 C = ω 𝑜
31 7 simpld A ω 𝑜 C B On ω 𝑜 C B ω On
32 oe0 ω On ω 𝑜 = 1 𝑜
33 31 32 syl A ω 𝑜 C B On ω 𝑜 C B ω 𝑜 = 1 𝑜
34 30 33 sylan9eqr A ω 𝑜 C B On ω 𝑜 C B C = ω 𝑜 C = 1 𝑜
35 29 34 eleqtrd A ω 𝑜 C B On ω 𝑜 C B C = A 1 𝑜
36 el1o A 1 𝑜 A =
37 35 36 sylib A ω 𝑜 C B On ω 𝑜 C B C = A =
38 37 oveq1d A ω 𝑜 C B On ω 𝑜 C B C = A + 𝑜 ω 𝑜 C = + 𝑜 ω 𝑜 C
39 9 adantr A ω 𝑜 C B On ω 𝑜 C B C = ω 𝑜 C On
40 oa0r ω 𝑜 C On + 𝑜 ω 𝑜 C = ω 𝑜 C
41 39 40 syl A ω 𝑜 C B On ω 𝑜 C B C = + 𝑜 ω 𝑜 C = ω 𝑜 C
42 38 41 eqtrd A ω 𝑜 C B On ω 𝑜 C B C = A + 𝑜 ω 𝑜 C = ω 𝑜 C
43 42 ex A ω 𝑜 C B On ω 𝑜 C B C = A + 𝑜 ω 𝑜 C = ω 𝑜 C
44 31 adantr A ω 𝑜 C B On ω 𝑜 C B x On C = suc x ω On
45 simprl A ω 𝑜 C B On ω 𝑜 C B x On C = suc x x On
46 oecl ω On x On ω 𝑜 x On
47 44 45 46 syl2anc A ω 𝑜 C B On ω 𝑜 C B x On C = suc x ω 𝑜 x On
48 limom Lim ω
49 44 48 jctir A ω 𝑜 C B On ω 𝑜 C B x On C = suc x ω On Lim ω
50 simplll A ω 𝑜 C B On ω 𝑜 C B x On C = suc x A ω 𝑜 C
51 simprr A ω 𝑜 C B On ω 𝑜 C B x On C = suc x C = suc x
52 51 oveq2d A ω 𝑜 C B On ω 𝑜 C B x On C = suc x ω 𝑜 C = ω 𝑜 suc x
53 oesuc ω On x On ω 𝑜 suc x = ω 𝑜 x 𝑜 ω
54 44 45 53 syl2anc A ω 𝑜 C B On ω 𝑜 C B x On C = suc x ω 𝑜 suc x = ω 𝑜 x 𝑜 ω
55 52 54 eqtrd A ω 𝑜 C B On ω 𝑜 C B x On C = suc x ω 𝑜 C = ω 𝑜 x 𝑜 ω
56 50 55 eleqtrd A ω 𝑜 C B On ω 𝑜 C B x On C = suc x A ω 𝑜 x 𝑜 ω
57 omordlim ω 𝑜 x On ω On Lim ω A ω 𝑜 x 𝑜 ω y ω A ω 𝑜 x 𝑜 y
58 47 49 56 57 syl21anc A ω 𝑜 C B On ω 𝑜 C B x On C = suc x y ω A ω 𝑜 x 𝑜 y
59 47 adantr A ω 𝑜 C B On ω 𝑜 C B x On C = suc x y ω A ω 𝑜 x 𝑜 y ω 𝑜 x On
60 nnon y ω y On
61 60 ad2antrl A ω 𝑜 C B On ω 𝑜 C B x On C = suc x y ω A ω 𝑜 x 𝑜 y y On
62 omcl ω 𝑜 x On y On ω 𝑜 x 𝑜 y On
63 59 61 62 syl2anc A ω 𝑜 C B On ω 𝑜 C B x On C = suc x y ω A ω 𝑜 x 𝑜 y ω 𝑜 x 𝑜 y On
64 eloni ω 𝑜 x 𝑜 y On Ord ω 𝑜 x 𝑜 y
65 63 64 syl A ω 𝑜 C B On ω 𝑜 C B x On C = suc x y ω A ω 𝑜 x 𝑜 y Ord ω 𝑜 x 𝑜 y
66 simprr A ω 𝑜 C B On ω 𝑜 C B x On C = suc x y ω A ω 𝑜 x 𝑜 y A ω 𝑜 x 𝑜 y
67 ordelss Ord ω 𝑜 x 𝑜 y A ω 𝑜 x 𝑜 y A ω 𝑜 x 𝑜 y
68 65 66 67 syl2anc A ω 𝑜 C B On ω 𝑜 C B x On C = suc x y ω A ω 𝑜 x 𝑜 y A ω 𝑜 x 𝑜 y
69 18 ad2antrr A ω 𝑜 C B On ω 𝑜 C B x On C = suc x y ω A ω 𝑜 x 𝑜 y A On
70 9 ad2antrr A ω 𝑜 C B On ω 𝑜 C B x On C = suc x y ω A ω 𝑜 x 𝑜 y ω 𝑜 C On
71 oawordri A On ω 𝑜 x 𝑜 y On ω 𝑜 C On A ω 𝑜 x 𝑜 y A + 𝑜 ω 𝑜 C ω 𝑜 x 𝑜 y + 𝑜 ω 𝑜 C
72 69 63 70 71 syl3anc A ω 𝑜 C B On ω 𝑜 C B x On C = suc x y ω A ω 𝑜 x 𝑜 y A ω 𝑜 x 𝑜 y A + 𝑜 ω 𝑜 C ω 𝑜 x 𝑜 y + 𝑜 ω 𝑜 C
73 68 72 mpd A ω 𝑜 C B On ω 𝑜 C B x On C = suc x y ω A ω 𝑜 x 𝑜 y A + 𝑜 ω 𝑜 C ω 𝑜 x 𝑜 y + 𝑜 ω 𝑜 C
74 44 adantr A ω 𝑜 C B On ω 𝑜 C B x On C = suc x y ω A ω 𝑜 x 𝑜 y ω On
75 odi ω 𝑜 x On y On ω On ω 𝑜 x 𝑜 y + 𝑜 ω = ω 𝑜 x 𝑜 y + 𝑜 ω 𝑜 x 𝑜 ω
76 59 61 74 75 syl3anc A ω 𝑜 C B On ω 𝑜 C B x On C = suc x y ω A ω 𝑜 x 𝑜 y ω 𝑜 x 𝑜 y + 𝑜 ω = ω 𝑜 x 𝑜 y + 𝑜 ω 𝑜 x 𝑜 ω
77 simprl A ω 𝑜 C B On ω 𝑜 C B x On C = suc x y ω A ω 𝑜 x 𝑜 y y ω
78 oaabslem ω On y ω y + 𝑜 ω = ω
79 74 77 78 syl2anc A ω 𝑜 C B On ω 𝑜 C B x On C = suc x y ω A ω 𝑜 x 𝑜 y y + 𝑜 ω = ω
80 79 oveq2d A ω 𝑜 C B On ω 𝑜 C B x On C = suc x y ω A ω 𝑜 x 𝑜 y ω 𝑜 x 𝑜 y + 𝑜 ω = ω 𝑜 x 𝑜 ω
81 76 80 eqtr3d A ω 𝑜 C B On ω 𝑜 C B x On C = suc x y ω A ω 𝑜 x 𝑜 y ω 𝑜 x 𝑜 y + 𝑜 ω 𝑜 x 𝑜 ω = ω 𝑜 x 𝑜 ω
82 55 adantr A ω 𝑜 C B On ω 𝑜 C B x On C = suc x y ω A ω 𝑜 x 𝑜 y ω 𝑜 C = ω 𝑜 x 𝑜 ω
83 82 oveq2d A ω 𝑜 C B On ω 𝑜 C B x On C = suc x y ω A ω 𝑜 x 𝑜 y ω 𝑜 x 𝑜 y + 𝑜 ω 𝑜 C = ω 𝑜 x 𝑜 y + 𝑜 ω 𝑜 x 𝑜 ω
84 81 83 82 3eqtr4d A ω 𝑜 C B On ω 𝑜 C B x On C = suc x y ω A ω 𝑜 x 𝑜 y ω 𝑜 x 𝑜 y + 𝑜 ω 𝑜 C = ω 𝑜 C
85 73 84 sseqtrd A ω 𝑜 C B On ω 𝑜 C B x On C = suc x y ω A ω 𝑜 x 𝑜 y A + 𝑜 ω 𝑜 C ω 𝑜 C
86 58 85 rexlimddv A ω 𝑜 C B On ω 𝑜 C B x On C = suc x A + 𝑜 ω 𝑜 C ω 𝑜 C
87 oaword2 ω 𝑜 C On A On ω 𝑜 C A + 𝑜 ω 𝑜 C
88 9 18 87 syl2anc A ω 𝑜 C B On ω 𝑜 C B ω 𝑜 C A + 𝑜 ω 𝑜 C
89 88 adantr A ω 𝑜 C B On ω 𝑜 C B x On C = suc x ω 𝑜 C A + 𝑜 ω 𝑜 C
90 86 89 eqssd A ω 𝑜 C B On ω 𝑜 C B x On C = suc x A + 𝑜 ω 𝑜 C = ω 𝑜 C
91 90 rexlimdvaa A ω 𝑜 C B On ω 𝑜 C B x On C = suc x A + 𝑜 ω 𝑜 C = ω 𝑜 C
92 simplll A ω 𝑜 C B On ω 𝑜 C B Lim C A ω 𝑜 C
93 31 adantr A ω 𝑜 C B On ω 𝑜 C B Lim C ω On
94 24 adantr A ω 𝑜 C B On ω 𝑜 C B Lim C C On
95 simpr A ω 𝑜 C B On ω 𝑜 C B Lim C Lim C
96 oelim2 ω On C On Lim C ω 𝑜 C = x C 1 𝑜 ω 𝑜 x
97 93 94 95 96 syl12anc A ω 𝑜 C B On ω 𝑜 C B Lim C ω 𝑜 C = x C 1 𝑜 ω 𝑜 x
98 92 97 eleqtrd A ω 𝑜 C B On ω 𝑜 C B Lim C A x C 1 𝑜 ω 𝑜 x
99 eliun A x C 1 𝑜 ω 𝑜 x x C 1 𝑜 A ω 𝑜 x
100 98 99 sylib A ω 𝑜 C B On ω 𝑜 C B Lim C x C 1 𝑜 A ω 𝑜 x
101 eldifi x C 1 𝑜 x C
102 18 ad2antrr A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x A On
103 9 ad2antrr A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x ω 𝑜 C On
104 93 adantr A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x ω On
105 1onn 1 𝑜 ω
106 ondif2 ω On 2 𝑜 ω On 1 𝑜 ω
107 104 105 106 sylanblrc A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x ω On 2 𝑜
108 94 adantr A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x C On
109 simplr A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x Lim C
110 oelimcl ω On 2 𝑜 C On Lim C Lim ω 𝑜 C
111 107 108 109 110 syl12anc A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x Lim ω 𝑜 C
112 oalim A On ω 𝑜 C On Lim ω 𝑜 C A + 𝑜 ω 𝑜 C = y ω 𝑜 C A + 𝑜 y
113 102 103 111 112 syl12anc A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x A + 𝑜 ω 𝑜 C = y ω 𝑜 C A + 𝑜 y
114 oelim2 ω On C On Lim C ω 𝑜 C = z C 1 𝑜 ω 𝑜 z
115 93 94 95 114 syl12anc A ω 𝑜 C B On ω 𝑜 C B Lim C ω 𝑜 C = z C 1 𝑜 ω 𝑜 z
116 115 eleq2d A ω 𝑜 C B On ω 𝑜 C B Lim C y ω 𝑜 C y z C 1 𝑜 ω 𝑜 z
117 eliun y z C 1 𝑜 ω 𝑜 z z C 1 𝑜 y ω 𝑜 z
118 116 117 bitrdi A ω 𝑜 C B On ω 𝑜 C B Lim C y ω 𝑜 C z C 1 𝑜 y ω 𝑜 z
119 118 adantr A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x y ω 𝑜 C z C 1 𝑜 y ω 𝑜 z
120 eldifi z C 1 𝑜 z C
121 104 adantr A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z ω On
122 108 adantr A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z C On
123 simplrl A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z x C
124 onelon C On x C x On
125 122 123 124 syl2anc A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z x On
126 121 125 46 syl2anc A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z ω 𝑜 x On
127 eloni ω 𝑜 x On Ord ω 𝑜 x
128 126 127 syl A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z Ord ω 𝑜 x
129 simplrr A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z A ω 𝑜 x
130 ordelss Ord ω 𝑜 x A ω 𝑜 x A ω 𝑜 x
131 128 129 130 syl2anc A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z A ω 𝑜 x
132 ssun1 x x z
133 26 ad3antrrr A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z Ord C
134 simprl A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z z C
135 ordunel Ord C x C z C x z C
136 133 123 134 135 syl3anc A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z x z C
137 onelon C On x z C x z On
138 122 136 137 syl2anc A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z x z On
139 peano1 ω
140 139 a1i A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z ω
141 oewordi x On x z On ω On ω x x z ω 𝑜 x ω 𝑜 x z
142 125 138 121 140 141 syl31anc A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z x x z ω 𝑜 x ω 𝑜 x z
143 132 142 mpi A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z ω 𝑜 x ω 𝑜 x z
144 131 143 sstrd A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z A ω 𝑜 x z
145 102 adantr A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z A On
146 oecl ω On x z On ω 𝑜 x z On
147 121 138 146 syl2anc A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z ω 𝑜 x z On
148 onelon C On z C z On
149 122 134 148 syl2anc A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z z On
150 oecl ω On z On ω 𝑜 z On
151 121 149 150 syl2anc A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z ω 𝑜 z On
152 simprr A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z y ω 𝑜 z
153 onelon ω 𝑜 z On y ω 𝑜 z y On
154 151 152 153 syl2anc A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z y On
155 oawordri A On ω 𝑜 x z On y On A ω 𝑜 x z A + 𝑜 y ω 𝑜 x z + 𝑜 y
156 145 147 154 155 syl3anc A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z A ω 𝑜 x z A + 𝑜 y ω 𝑜 x z + 𝑜 y
157 144 156 mpd A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z A + 𝑜 y ω 𝑜 x z + 𝑜 y
158 eloni ω 𝑜 z On Ord ω 𝑜 z
159 151 158 syl A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z Ord ω 𝑜 z
160 ordelss Ord ω 𝑜 z y ω 𝑜 z y ω 𝑜 z
161 159 152 160 syl2anc A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z y ω 𝑜 z
162 ssun2 z x z
163 oewordi z On x z On ω On ω z x z ω 𝑜 z ω 𝑜 x z
164 149 138 121 140 163 syl31anc A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z z x z ω 𝑜 z ω 𝑜 x z
165 162 164 mpi A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z ω 𝑜 z ω 𝑜 x z
166 161 165 sstrd A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z y ω 𝑜 x z
167 oaword y On ω 𝑜 x z On ω 𝑜 x z On y ω 𝑜 x z ω 𝑜 x z + 𝑜 y ω 𝑜 x z + 𝑜 ω 𝑜 x z
168 154 147 147 167 syl3anc A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z y ω 𝑜 x z ω 𝑜 x z + 𝑜 y ω 𝑜 x z + 𝑜 ω 𝑜 x z
169 166 168 mpbid A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z ω 𝑜 x z + 𝑜 y ω 𝑜 x z + 𝑜 ω 𝑜 x z
170 157 169 sstrd A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z A + 𝑜 y ω 𝑜 x z + 𝑜 ω 𝑜 x z
171 ordom Ord ω
172 ordsucss Ord ω 1 𝑜 ω suc 1 𝑜 ω
173 171 105 172 mp2 suc 1 𝑜 ω
174 1on 1 𝑜 On
175 suceloni 1 𝑜 On suc 1 𝑜 On
176 174 175 mp1i A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z suc 1 𝑜 On
177 omwordi suc 1 𝑜 On ω On ω 𝑜 x z On suc 1 𝑜 ω ω 𝑜 x z 𝑜 suc 1 𝑜 ω 𝑜 x z 𝑜 ω
178 176 121 147 177 syl3anc A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z suc 1 𝑜 ω ω 𝑜 x z 𝑜 suc 1 𝑜 ω 𝑜 x z 𝑜 ω
179 173 178 mpi A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z ω 𝑜 x z 𝑜 suc 1 𝑜 ω 𝑜 x z 𝑜 ω
180 174 a1i A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z 1 𝑜 On
181 omsuc ω 𝑜 x z On 1 𝑜 On ω 𝑜 x z 𝑜 suc 1 𝑜 = ω 𝑜 x z 𝑜 1 𝑜 + 𝑜 ω 𝑜 x z
182 147 180 181 syl2anc A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z ω 𝑜 x z 𝑜 suc 1 𝑜 = ω 𝑜 x z 𝑜 1 𝑜 + 𝑜 ω 𝑜 x z
183 om1 ω 𝑜 x z On ω 𝑜 x z 𝑜 1 𝑜 = ω 𝑜 x z
184 147 183 syl A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z ω 𝑜 x z 𝑜 1 𝑜 = ω 𝑜 x z
185 184 oveq1d A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z ω 𝑜 x z 𝑜 1 𝑜 + 𝑜 ω 𝑜 x z = ω 𝑜 x z + 𝑜 ω 𝑜 x z
186 182 185 eqtr2d A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z ω 𝑜 x z + 𝑜 ω 𝑜 x z = ω 𝑜 x z 𝑜 suc 1 𝑜
187 oesuc ω On x z On ω 𝑜 suc x z = ω 𝑜 x z 𝑜 ω
188 121 138 187 syl2anc A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z ω 𝑜 suc x z = ω 𝑜 x z 𝑜 ω
189 179 186 188 3sstr4d A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z ω 𝑜 x z + 𝑜 ω 𝑜 x z ω 𝑜 suc x z
190 170 189 sstrd A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z A + 𝑜 y ω 𝑜 suc x z
191 ordsucss Ord C x z C suc x z C
192 133 136 191 sylc A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z suc x z C
193 suceloni x z On suc x z On
194 138 193 syl A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z suc x z On
195 oewordi suc x z On C On ω On ω suc x z C ω 𝑜 suc x z ω 𝑜 C
196 194 122 121 140 195 syl31anc A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z suc x z C ω 𝑜 suc x z ω 𝑜 C
197 192 196 mpd A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z ω 𝑜 suc x z ω 𝑜 C
198 190 197 sstrd A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z A + 𝑜 y ω 𝑜 C
199 198 expr A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C y ω 𝑜 z A + 𝑜 y ω 𝑜 C
200 120 199 sylan2 A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C 1 𝑜 y ω 𝑜 z A + 𝑜 y ω 𝑜 C
201 200 rexlimdva A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x z C 1 𝑜 y ω 𝑜 z A + 𝑜 y ω 𝑜 C
202 119 201 sylbid A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x y ω 𝑜 C A + 𝑜 y ω 𝑜 C
203 202 ralrimiv A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x y ω 𝑜 C A + 𝑜 y ω 𝑜 C
204 iunss y ω 𝑜 C A + 𝑜 y ω 𝑜 C y ω 𝑜 C A + 𝑜 y ω 𝑜 C
205 203 204 sylibr A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x y ω 𝑜 C A + 𝑜 y ω 𝑜 C
206 113 205 eqsstrd A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x A + 𝑜 ω 𝑜 C ω 𝑜 C
207 206 expr A ω 𝑜 C B On ω 𝑜 C B Lim C x C A ω 𝑜 x A + 𝑜 ω 𝑜 C ω 𝑜 C
208 101 207 sylan2 A ω 𝑜 C B On ω 𝑜 C B Lim C x C 1 𝑜 A ω 𝑜 x A + 𝑜 ω 𝑜 C ω 𝑜 C
209 208 rexlimdva A ω 𝑜 C B On ω 𝑜 C B Lim C x C 1 𝑜 A ω 𝑜 x A + 𝑜 ω 𝑜 C ω 𝑜 C
210 100 209 mpd A ω 𝑜 C B On ω 𝑜 C B Lim C A + 𝑜 ω 𝑜 C ω 𝑜 C
211 88 adantr A ω 𝑜 C B On ω 𝑜 C B Lim C ω 𝑜 C A + 𝑜 ω 𝑜 C
212 210 211 eqssd A ω 𝑜 C B On ω 𝑜 C B Lim C A + 𝑜 ω 𝑜 C = ω 𝑜 C
213 212 ex A ω 𝑜 C B On ω 𝑜 C B Lim C A + 𝑜 ω 𝑜 C = ω 𝑜 C
214 43 91 213 3jaod A ω 𝑜 C B On ω 𝑜 C B C = x On C = suc x Lim C A + 𝑜 ω 𝑜 C = ω 𝑜 C
215 28 214 mpd A ω 𝑜 C B On ω 𝑜 C B A + 𝑜 ω 𝑜 C = ω 𝑜 C
216 215 adantr A ω 𝑜 C B On ω 𝑜 C B x On A + 𝑜 ω 𝑜 C = ω 𝑜 C
217 216 oveq1d A ω 𝑜 C B On ω 𝑜 C B x On A + 𝑜 ω 𝑜 C + 𝑜 x = ω 𝑜 C + 𝑜 x
218 23 217 eqtr3d A ω 𝑜 C B On ω 𝑜 C B x On A + 𝑜 ω 𝑜 C + 𝑜 x = ω 𝑜 C + 𝑜 x
219 oveq2 ω 𝑜 C + 𝑜 x = B A + 𝑜 ω 𝑜 C + 𝑜 x = A + 𝑜 B
220 id ω 𝑜 C + 𝑜 x = B ω 𝑜 C + 𝑜 x = B
221 219 220 eqeq12d ω 𝑜 C + 𝑜 x = B A + 𝑜 ω 𝑜 C + 𝑜 x = ω 𝑜 C + 𝑜 x A + 𝑜 B = B
222 218 221 syl5ibcom A ω 𝑜 C B On ω 𝑜 C B x On ω 𝑜 C + 𝑜 x = B A + 𝑜 B = B
223 222 rexlimdva A ω 𝑜 C B On ω 𝑜 C B x On ω 𝑜 C + 𝑜 x = B A + 𝑜 B = B
224 15 223 mpd A ω 𝑜 C B On ω 𝑜 C B A + 𝑜 B = B