Metamath Proof Explorer


Theorem oaabs

Description: Ordinal addition absorbs a natural number added to the left of a transfinite number. Proposition 8.10 of TakeutiZaring p. 59. (Contributed by NM, 9-Dec-2004) (Proof shortened by Mario Carneiro, 29-May-2015)

Ref Expression
Assertion oaabs AωBOnωBA+𝑜B=B

Proof

Step Hyp Ref Expression
1 ssexg ωBBOnωV
2 1 ex ωBBOnωV
3 omelon2 ωVωOn
4 2 3 syl6com BOnωBωOn
5 4 imp BOnωBωOn
6 5 adantll AωBOnωBωOn
7 simplr AωBOnωBBOn
8 6 7 jca AωBOnωBωOnBOn
9 oawordeu ωOnBOnωB∃!xOnω+𝑜x=B
10 8 9 sylancom AωBOnωB∃!xOnω+𝑜x=B
11 reurex ∃!xOnω+𝑜x=BxOnω+𝑜x=B
12 10 11 syl AωBOnωBxOnω+𝑜x=B
13 nnon AωAOn
14 13 ad3antrrr AωBOnωBxOnAOn
15 6 adantr AωBOnωBxOnωOn
16 simpr AωBOnωBxOnxOn
17 oaass AOnωOnxOnA+𝑜ω+𝑜x=A+𝑜ω+𝑜x
18 14 15 16 17 syl3anc AωBOnωBxOnA+𝑜ω+𝑜x=A+𝑜ω+𝑜x
19 simpll AωBOnωBAω
20 oaabslem ωOnAωA+𝑜ω=ω
21 6 19 20 syl2anc AωBOnωBA+𝑜ω=ω
22 21 adantr AωBOnωBxOnA+𝑜ω=ω
23 22 oveq1d AωBOnωBxOnA+𝑜ω+𝑜x=ω+𝑜x
24 18 23 eqtr3d AωBOnωBxOnA+𝑜ω+𝑜x=ω+𝑜x
25 oveq2 ω+𝑜x=BA+𝑜ω+𝑜x=A+𝑜B
26 id ω+𝑜x=Bω+𝑜x=B
27 25 26 eqeq12d ω+𝑜x=BA+𝑜ω+𝑜x=ω+𝑜xA+𝑜B=B
28 24 27 syl5ibcom AωBOnωBxOnω+𝑜x=BA+𝑜B=B
29 28 rexlimdva AωBOnωBxOnω+𝑜x=BA+𝑜B=B
30 12 29 mpd AωBOnωBA+𝑜B=B