Metamath Proof Explorer


Theorem oaabslem

Description: Lemma for oaabs . (Contributed by NM, 9-Dec-2004)

Ref Expression
Assertion oaabslem ωOnAωA+𝑜ω=ω

Proof

Step Hyp Ref Expression
1 nnon AωAOn
2 limom Limω
3 2 jctr ωOnωOnLimω
4 oalim AOnωOnLimωA+𝑜ω=xωA+𝑜x
5 1 3 4 syl2an AωωOnA+𝑜ω=xωA+𝑜x
6 ordom Ordω
7 nnacl AωxωA+𝑜xω
8 ordelss OrdωA+𝑜xωA+𝑜xω
9 6 7 8 sylancr AωxωA+𝑜xω
10 9 ralrimiva AωxωA+𝑜xω
11 iunss xωA+𝑜xωxωA+𝑜xω
12 10 11 sylibr AωxωA+𝑜xω
13 12 adantr AωωOnxωA+𝑜xω
14 5 13 eqsstrd AωωOnA+𝑜ωω
15 14 ancoms ωOnAωA+𝑜ωω
16 oaword2 ωOnAOnωA+𝑜ω
17 1 16 sylan2 ωOnAωωA+𝑜ω
18 15 17 eqssd ωOnAωA+𝑜ω=ω