| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnon |
|- ( A e. _om -> A e. On ) |
| 2 |
|
limom |
|- Lim _om |
| 3 |
2
|
jctr |
|- ( _om e. On -> ( _om e. On /\ Lim _om ) ) |
| 4 |
|
oalim |
|- ( ( A e. On /\ ( _om e. On /\ Lim _om ) ) -> ( A +o _om ) = U_ x e. _om ( A +o x ) ) |
| 5 |
1 3 4
|
syl2an |
|- ( ( A e. _om /\ _om e. On ) -> ( A +o _om ) = U_ x e. _om ( A +o x ) ) |
| 6 |
|
ordom |
|- Ord _om |
| 7 |
|
nnacl |
|- ( ( A e. _om /\ x e. _om ) -> ( A +o x ) e. _om ) |
| 8 |
|
ordelss |
|- ( ( Ord _om /\ ( A +o x ) e. _om ) -> ( A +o x ) C_ _om ) |
| 9 |
6 7 8
|
sylancr |
|- ( ( A e. _om /\ x e. _om ) -> ( A +o x ) C_ _om ) |
| 10 |
9
|
ralrimiva |
|- ( A e. _om -> A. x e. _om ( A +o x ) C_ _om ) |
| 11 |
|
iunss |
|- ( U_ x e. _om ( A +o x ) C_ _om <-> A. x e. _om ( A +o x ) C_ _om ) |
| 12 |
10 11
|
sylibr |
|- ( A e. _om -> U_ x e. _om ( A +o x ) C_ _om ) |
| 13 |
12
|
adantr |
|- ( ( A e. _om /\ _om e. On ) -> U_ x e. _om ( A +o x ) C_ _om ) |
| 14 |
5 13
|
eqsstrd |
|- ( ( A e. _om /\ _om e. On ) -> ( A +o _om ) C_ _om ) |
| 15 |
14
|
ancoms |
|- ( ( _om e. On /\ A e. _om ) -> ( A +o _om ) C_ _om ) |
| 16 |
|
oaword2 |
|- ( ( _om e. On /\ A e. On ) -> _om C_ ( A +o _om ) ) |
| 17 |
1 16
|
sylan2 |
|- ( ( _om e. On /\ A e. _om ) -> _om C_ ( A +o _om ) ) |
| 18 |
15 17
|
eqssd |
|- ( ( _om e. On /\ A e. _om ) -> ( A +o _om ) = _om ) |