Metamath Proof Explorer


Theorem oaabslem

Description: Lemma for oaabs . (Contributed by NM, 9-Dec-2004)

Ref Expression
Assertion oaabslem
|- ( ( _om e. On /\ A e. _om ) -> ( A +o _om ) = _om )

Proof

Step Hyp Ref Expression
1 nnon
 |-  ( A e. _om -> A e. On )
2 limom
 |-  Lim _om
3 2 jctr
 |-  ( _om e. On -> ( _om e. On /\ Lim _om ) )
4 oalim
 |-  ( ( A e. On /\ ( _om e. On /\ Lim _om ) ) -> ( A +o _om ) = U_ x e. _om ( A +o x ) )
5 1 3 4 syl2an
 |-  ( ( A e. _om /\ _om e. On ) -> ( A +o _om ) = U_ x e. _om ( A +o x ) )
6 ordom
 |-  Ord _om
7 nnacl
 |-  ( ( A e. _om /\ x e. _om ) -> ( A +o x ) e. _om )
8 ordelss
 |-  ( ( Ord _om /\ ( A +o x ) e. _om ) -> ( A +o x ) C_ _om )
9 6 7 8 sylancr
 |-  ( ( A e. _om /\ x e. _om ) -> ( A +o x ) C_ _om )
10 9 ralrimiva
 |-  ( A e. _om -> A. x e. _om ( A +o x ) C_ _om )
11 iunss
 |-  ( U_ x e. _om ( A +o x ) C_ _om <-> A. x e. _om ( A +o x ) C_ _om )
12 10 11 sylibr
 |-  ( A e. _om -> U_ x e. _om ( A +o x ) C_ _om )
13 12 adantr
 |-  ( ( A e. _om /\ _om e. On ) -> U_ x e. _om ( A +o x ) C_ _om )
14 5 13 eqsstrd
 |-  ( ( A e. _om /\ _om e. On ) -> ( A +o _om ) C_ _om )
15 14 ancoms
 |-  ( ( _om e. On /\ A e. _om ) -> ( A +o _om ) C_ _om )
16 oaword2
 |-  ( ( _om e. On /\ A e. On ) -> _om C_ ( A +o _om ) )
17 1 16 sylan2
 |-  ( ( _om e. On /\ A e. _om ) -> _om C_ ( A +o _om ) )
18 15 17 eqssd
 |-  ( ( _om e. On /\ A e. _om ) -> ( A +o _om ) = _om )