Step |
Hyp |
Ref |
Expression |
1 |
|
nnon |
|- ( A e. _om -> A e. On ) |
2 |
|
limom |
|- Lim _om |
3 |
2
|
jctr |
|- ( _om e. On -> ( _om e. On /\ Lim _om ) ) |
4 |
|
oalim |
|- ( ( A e. On /\ ( _om e. On /\ Lim _om ) ) -> ( A +o _om ) = U_ x e. _om ( A +o x ) ) |
5 |
1 3 4
|
syl2an |
|- ( ( A e. _om /\ _om e. On ) -> ( A +o _om ) = U_ x e. _om ( A +o x ) ) |
6 |
|
ordom |
|- Ord _om |
7 |
|
nnacl |
|- ( ( A e. _om /\ x e. _om ) -> ( A +o x ) e. _om ) |
8 |
|
ordelss |
|- ( ( Ord _om /\ ( A +o x ) e. _om ) -> ( A +o x ) C_ _om ) |
9 |
6 7 8
|
sylancr |
|- ( ( A e. _om /\ x e. _om ) -> ( A +o x ) C_ _om ) |
10 |
9
|
ralrimiva |
|- ( A e. _om -> A. x e. _om ( A +o x ) C_ _om ) |
11 |
|
iunss |
|- ( U_ x e. _om ( A +o x ) C_ _om <-> A. x e. _om ( A +o x ) C_ _om ) |
12 |
10 11
|
sylibr |
|- ( A e. _om -> U_ x e. _om ( A +o x ) C_ _om ) |
13 |
12
|
adantr |
|- ( ( A e. _om /\ _om e. On ) -> U_ x e. _om ( A +o x ) C_ _om ) |
14 |
5 13
|
eqsstrd |
|- ( ( A e. _om /\ _om e. On ) -> ( A +o _om ) C_ _om ) |
15 |
14
|
ancoms |
|- ( ( _om e. On /\ A e. _om ) -> ( A +o _om ) C_ _om ) |
16 |
|
oaword2 |
|- ( ( _om e. On /\ A e. On ) -> _om C_ ( A +o _om ) ) |
17 |
1 16
|
sylan2 |
|- ( ( _om e. On /\ A e. _om ) -> _om C_ ( A +o _om ) ) |
18 |
15 17
|
eqssd |
|- ( ( _om e. On /\ A e. _om ) -> ( A +o _om ) = _om ) |