Metamath Proof Explorer


Theorem ordzsl

Description: An ordinal is zero, a successor ordinal, or a limit ordinal. (Contributed by NM, 1-Oct-2003)

Ref Expression
Assertion ordzsl Ord A A = x On A = suc x Lim A

Proof

Step Hyp Ref Expression
1 orduninsuc Ord A A = A ¬ x On A = suc x
2 1 biimprd Ord A ¬ x On A = suc x A = A
3 unizlim Ord A A = A A = Lim A
4 2 3 sylibd Ord A ¬ x On A = suc x A = Lim A
5 4 orrd Ord A x On A = suc x A = Lim A
6 3orass A = x On A = suc x Lim A A = x On A = suc x Lim A
7 or12 A = x On A = suc x Lim A x On A = suc x A = Lim A
8 6 7 bitri A = x On A = suc x Lim A x On A = suc x A = Lim A
9 5 8 sylibr Ord A A = x On A = suc x Lim A
10 ord0 Ord
11 ordeq A = Ord A Ord
12 10 11 mpbiri A = Ord A
13 suceloni x On suc x On
14 eleq1 A = suc x A On suc x On
15 13 14 syl5ibr A = suc x x On A On
16 eloni A On Ord A
17 15 16 syl6com x On A = suc x Ord A
18 17 rexlimiv x On A = suc x Ord A
19 limord Lim A Ord A
20 12 18 19 3jaoi A = x On A = suc x Lim A Ord A
21 9 20 impbii Ord A A = x On A = suc x Lim A