Description: An ordinal is zero, a successor ordinal, or a limit ordinal. Remark 1.12 of Schloeder p. 2. (Contributed by NM, 1-Oct-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | ordzsl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orduninsuc | |
|
2 | 1 | biimprd | |
3 | unizlim | |
|
4 | 2 3 | sylibd | |
5 | 4 | orrd | |
6 | 3orass | |
|
7 | or12 | |
|
8 | 6 7 | bitri | |
9 | 5 8 | sylibr | |
10 | ord0 | |
|
11 | ordeq | |
|
12 | 10 11 | mpbiri | |
13 | onsuc | |
|
14 | eleq1 | |
|
15 | 13 14 | imbitrrid | |
16 | eloni | |
|
17 | 15 16 | syl6com | |
18 | 17 | rexlimiv | |
19 | limord | |
|
20 | 12 18 19 | 3jaoi | |
21 | 9 20 | impbii | |