Metamath Proof Explorer


Theorem ordzsl

Description: An ordinal is zero, a successor ordinal, or a limit ordinal. Remark 1.12 of Schloeder p. 2. (Contributed by NM, 1-Oct-2003)

Ref Expression
Assertion ordzsl OrdAA=xOnA=sucxLimA

Proof

Step Hyp Ref Expression
1 orduninsuc OrdAA=A¬xOnA=sucx
2 1 biimprd OrdA¬xOnA=sucxA=A
3 unizlim OrdAA=AA=LimA
4 2 3 sylibd OrdA¬xOnA=sucxA=LimA
5 4 orrd OrdAxOnA=sucxA=LimA
6 3orass A=xOnA=sucxLimAA=xOnA=sucxLimA
7 or12 A=xOnA=sucxLimAxOnA=sucxA=LimA
8 6 7 bitri A=xOnA=sucxLimAxOnA=sucxA=LimA
9 5 8 sylibr OrdAA=xOnA=sucxLimA
10 ord0 Ord
11 ordeq A=OrdAOrd
12 10 11 mpbiri A=OrdA
13 onsuc xOnsucxOn
14 eleq1 A=sucxAOnsucxOn
15 13 14 imbitrrid A=sucxxOnAOn
16 eloni AOnOrdA
17 15 16 syl6com xOnA=sucxOrdA
18 17 rexlimiv xOnA=sucxOrdA
19 limord LimAOrdA
20 12 18 19 3jaoi A=xOnA=sucxLimAOrdA
21 9 20 impbii OrdAA=xOnA=sucxLimA