Metamath Proof Explorer


Theorem onzsl

Description: An ordinal number is zero, a successor ordinal, or a limit ordinal number. (Contributed by NM, 1-Oct-2003) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion onzsl A On A = x On A = suc x A V Lim A

Proof

Step Hyp Ref Expression
1 elex A On A V
2 eloni A On Ord A
3 ordzsl Ord A A = x On A = suc x Lim A
4 3mix1 A = A = x On A = suc x A V Lim A
5 4 adantl A V A = A = x On A = suc x A V Lim A
6 3mix2 x On A = suc x A = x On A = suc x A V Lim A
7 6 adantl A V x On A = suc x A = x On A = suc x A V Lim A
8 3mix3 A V Lim A A = x On A = suc x A V Lim A
9 5 7 8 3jaodan A V A = x On A = suc x Lim A A = x On A = suc x A V Lim A
10 3 9 sylan2b A V Ord A A = x On A = suc x A V Lim A
11 1 2 10 syl2anc A On A = x On A = suc x A V Lim A
12 0elon On
13 eleq1 A = A On On
14 12 13 mpbiri A = A On
15 suceloni x On suc x On
16 eleq1 A = suc x A On suc x On
17 15 16 syl5ibrcom x On A = suc x A On
18 17 rexlimiv x On A = suc x A On
19 limelon A V Lim A A On
20 14 18 19 3jaoi A = x On A = suc x A V Lim A A On
21 11 20 impbii A On A = x On A = suc x A V Lim A