| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp2 |
|
| 2 |
|
onsucb |
|
| 3 |
1 2
|
sylib |
|
| 4 |
|
simp1 |
|
| 5 |
|
on0eln0 |
|
| 6 |
5
|
biimpar |
|
| 7 |
6
|
3adant2 |
|
| 8 |
|
omword2 |
|
| 9 |
3 4 7 8
|
syl21anc |
|
| 10 |
|
sucidg |
|
| 11 |
|
ssel |
|
| 12 |
10 11
|
syl5 |
|
| 13 |
9 1 12
|
sylc |
|
| 14 |
|
suceq |
|
| 15 |
14
|
oveq2d |
|
| 16 |
15
|
eleq2d |
|
| 17 |
16
|
rspcev |
|
| 18 |
1 13 17
|
syl2anc |
|
| 19 |
|
suceq |
|
| 20 |
19
|
oveq2d |
|
| 21 |
20
|
eleq2d |
|
| 22 |
21
|
onminex |
|
| 23 |
|
vex |
|
| 24 |
23
|
elon |
|
| 25 |
|
ordzsl |
|
| 26 |
24 25
|
bitri |
|
| 27 |
|
oveq2 |
|
| 28 |
|
om0 |
|
| 29 |
27 28
|
sylan9eqr |
|
| 30 |
|
ne0i |
|
| 31 |
30
|
necon2bi |
|
| 32 |
29 31
|
syl |
|
| 33 |
32
|
ex |
|
| 34 |
33
|
a1d |
|
| 35 |
34
|
3ad2ant1 |
|
| 36 |
35
|
imp |
|
| 37 |
|
simp3 |
|
| 38 |
|
simp2 |
|
| 39 |
|
raleq |
|
| 40 |
|
vex |
|
| 41 |
40
|
sucid |
|
| 42 |
|
suceq |
|
| 43 |
42
|
oveq2d |
|
| 44 |
43
|
eleq2d |
|
| 45 |
44
|
notbid |
|
| 46 |
45
|
rspcv |
|
| 47 |
41 46
|
ax-mp |
|
| 48 |
39 47
|
biimtrdi |
|
| 49 |
37 38 48
|
sylc |
|
| 50 |
|
oveq2 |
|
| 51 |
50
|
eleq2d |
|
| 52 |
51
|
notbid |
|
| 53 |
52
|
biimpar |
|
| 54 |
37 49 53
|
syl2anc |
|
| 55 |
54
|
3expia |
|
| 56 |
55
|
rexlimdvw |
|
| 57 |
|
ralnex |
|
| 58 |
|
simpr |
|
| 59 |
23
|
a1i |
|
| 60 |
|
simpl |
|
| 61 |
|
omlim |
|
| 62 |
58 59 60 61
|
syl12anc |
|
| 63 |
62
|
eleq2d |
|
| 64 |
|
eliun |
|
| 65 |
|
limord |
|
| 66 |
65
|
3ad2ant1 |
|
| 67 |
66 24
|
sylibr |
|
| 68 |
|
simp3 |
|
| 69 |
|
onelon |
|
| 70 |
67 68 69
|
syl2anc |
|
| 71 |
|
onsuc |
|
| 72 |
70 71
|
syl |
|
| 73 |
|
simp2 |
|
| 74 |
|
sssucid |
|
| 75 |
|
omwordi |
|
| 76 |
74 75
|
mpi |
|
| 77 |
70 72 73 76
|
syl3anc |
|
| 78 |
77
|
sseld |
|
| 79 |
78
|
3expia |
|
| 80 |
79
|
reximdvai |
|
| 81 |
64 80
|
biimtrid |
|
| 82 |
63 81
|
sylbid |
|
| 83 |
82
|
con3d |
|
| 84 |
57 83
|
biimtrid |
|
| 85 |
84
|
expimpd |
|
| 86 |
85
|
com12 |
|
| 87 |
86
|
3ad2antl1 |
|
| 88 |
36 56 87
|
3jaod |
|
| 89 |
26 88
|
biimtrid |
|
| 90 |
89
|
impr |
|
| 91 |
|
simpl1 |
|
| 92 |
|
simprr |
|
| 93 |
|
omcl |
|
| 94 |
91 92 93
|
syl2anc |
|
| 95 |
|
simpl2 |
|
| 96 |
|
ontri1 |
|
| 97 |
94 95 96
|
syl2anc |
|
| 98 |
90 97
|
mpbird |
|
| 99 |
|
oawordex |
|
| 100 |
94 95 99
|
syl2anc |
|
| 101 |
98 100
|
mpbid |
|
| 102 |
101
|
3adantr1 |
|
| 103 |
|
simp3r |
|
| 104 |
|
simp21 |
|
| 105 |
|
simp11 |
|
| 106 |
|
simp23 |
|
| 107 |
|
omsuc |
|
| 108 |
105 106 107
|
syl2anc |
|
| 109 |
104 108
|
eleqtrd |
|
| 110 |
103 109
|
eqeltrd |
|
| 111 |
|
simp3l |
|
| 112 |
105 106 93
|
syl2anc |
|
| 113 |
|
oaord |
|
| 114 |
111 105 112 113
|
syl3anc |
|
| 115 |
110 114
|
mpbird |
|
| 116 |
115 103
|
jca |
|
| 117 |
116
|
3expia |
|
| 118 |
117
|
reximdv2 |
|
| 119 |
102 118
|
mpd |
|
| 120 |
119
|
expcom |
|
| 121 |
120
|
3expia |
|
| 122 |
121
|
com13 |
|
| 123 |
122
|
reximdvai |
|
| 124 |
22 123
|
syl5 |
|
| 125 |
18 124
|
mpd |
|