Description: The division algorithm for ordinal multiplication. (Contributed by Mario Carneiro, 28-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | omeu | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omeulem1 | |
|
2 | opex | |
|
3 | 2 | isseti | |
4 | 19.41v | |
|
5 | 3 4 | mpbiran | |
6 | 5 | rexbii | |
7 | rexcom4 | |
|
8 | 6 7 | bitr3i | |
9 | 8 | rexbii | |
10 | rexcom4 | |
|
11 | 9 10 | bitri | |
12 | 1 11 | sylib | |
13 | simp2rl | |
|
14 | simp3rl | |
|
15 | simp2rr | |
|
16 | simp3rr | |
|
17 | 15 16 | eqtr4d | |
18 | simp11 | |
|
19 | simp13 | |
|
20 | simp2ll | |
|
21 | simp2lr | |
|
22 | simp3ll | |
|
23 | simp3lr | |
|
24 | omopth2 | |
|
25 | 18 19 20 21 22 23 24 | syl222anc | |
26 | 17 25 | mpbid | |
27 | opeq12 | |
|
28 | 26 27 | syl | |
29 | 14 28 | eqtr4d | |
30 | 13 29 | eqtr4d | |
31 | 30 | 3expia | |
32 | 31 | exp4b | |
33 | 32 | expd | |
34 | 33 | rexlimdvv | |
35 | 34 | imp | |
36 | 35 | rexlimdvv | |
37 | 36 | expimpd | |
38 | 37 | alrimivv | |
39 | opeq1 | |
|
40 | 39 | eqeq2d | |
41 | oveq2 | |
|
42 | 41 | oveq1d | |
43 | 42 | eqeq1d | |
44 | 40 43 | anbi12d | |
45 | opeq2 | |
|
46 | 45 | eqeq2d | |
47 | oveq2 | |
|
48 | 47 | eqeq1d | |
49 | 46 48 | anbi12d | |
50 | 44 49 | cbvrex2vw | |
51 | eqeq1 | |
|
52 | 51 | anbi1d | |
53 | 52 | 2rexbidv | |
54 | 50 53 | bitrid | |
55 | 54 | eu4 | |
56 | 12 38 55 | sylanbrc | |