Metamath Proof Explorer


Theorem omeu

Description: The division algorithm for ordinal multiplication. (Contributed by Mario Carneiro, 28-Feb-2013)

Ref Expression
Assertion omeu AOnBOnA∃!zxOnyAz=xyA𝑜x+𝑜y=B

Proof

Step Hyp Ref Expression
1 omeulem1 AOnBOnAxOnyAA𝑜x+𝑜y=B
2 opex xyV
3 2 isseti zz=xy
4 19.41v zz=xyA𝑜x+𝑜y=Bzz=xyA𝑜x+𝑜y=B
5 3 4 mpbiran zz=xyA𝑜x+𝑜y=BA𝑜x+𝑜y=B
6 5 rexbii yAzz=xyA𝑜x+𝑜y=ByAA𝑜x+𝑜y=B
7 rexcom4 yAzz=xyA𝑜x+𝑜y=BzyAz=xyA𝑜x+𝑜y=B
8 6 7 bitr3i yAA𝑜x+𝑜y=BzyAz=xyA𝑜x+𝑜y=B
9 8 rexbii xOnyAA𝑜x+𝑜y=BxOnzyAz=xyA𝑜x+𝑜y=B
10 rexcom4 xOnzyAz=xyA𝑜x+𝑜y=BzxOnyAz=xyA𝑜x+𝑜y=B
11 9 10 bitri xOnyAA𝑜x+𝑜y=BzxOnyAz=xyA𝑜x+𝑜y=B
12 1 11 sylib AOnBOnAzxOnyAz=xyA𝑜x+𝑜y=B
13 simp2rl AOnBOnAxOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=Bz=xy
14 simp3rl AOnBOnAxOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=Bt=rs
15 simp2rr AOnBOnAxOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=BA𝑜x+𝑜y=B
16 simp3rr AOnBOnAxOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=BA𝑜r+𝑜s=B
17 15 16 eqtr4d AOnBOnAxOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=BA𝑜x+𝑜y=A𝑜r+𝑜s
18 simp11 AOnBOnAxOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=BAOn
19 simp13 AOnBOnAxOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=BA
20 simp2ll AOnBOnAxOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=BxOn
21 simp2lr AOnBOnAxOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=ByA
22 simp3ll AOnBOnAxOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=BrOn
23 simp3lr AOnBOnAxOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=BsA
24 omopth2 AOnAxOnyArOnsAA𝑜x+𝑜y=A𝑜r+𝑜sx=ry=s
25 18 19 20 21 22 23 24 syl222anc AOnBOnAxOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=BA𝑜x+𝑜y=A𝑜r+𝑜sx=ry=s
26 17 25 mpbid AOnBOnAxOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=Bx=ry=s
27 opeq12 x=ry=sxy=rs
28 26 27 syl AOnBOnAxOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=Bxy=rs
29 14 28 eqtr4d AOnBOnAxOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=Bt=xy
30 13 29 eqtr4d AOnBOnAxOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=Bz=t
31 30 3expia AOnBOnAxOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=Bz=t
32 31 exp4b AOnBOnAxOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=Bz=t
33 32 expd AOnBOnAxOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=Bz=t
34 33 rexlimdvv AOnBOnAxOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=Bz=t
35 34 imp AOnBOnAxOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=Bz=t
36 35 rexlimdvv AOnBOnAxOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=Bz=t
37 36 expimpd AOnBOnAxOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=Bz=t
38 37 alrimivv AOnBOnAztxOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=Bz=t
39 opeq1 x=rxy=ry
40 39 eqeq2d x=rz=xyz=ry
41 oveq2 x=rA𝑜x=A𝑜r
42 41 oveq1d x=rA𝑜x+𝑜y=A𝑜r+𝑜y
43 42 eqeq1d x=rA𝑜x+𝑜y=BA𝑜r+𝑜y=B
44 40 43 anbi12d x=rz=xyA𝑜x+𝑜y=Bz=ryA𝑜r+𝑜y=B
45 opeq2 y=sry=rs
46 45 eqeq2d y=sz=ryz=rs
47 oveq2 y=sA𝑜r+𝑜y=A𝑜r+𝑜s
48 47 eqeq1d y=sA𝑜r+𝑜y=BA𝑜r+𝑜s=B
49 46 48 anbi12d y=sz=ryA𝑜r+𝑜y=Bz=rsA𝑜r+𝑜s=B
50 44 49 cbvrex2vw xOnyAz=xyA𝑜x+𝑜y=BrOnsAz=rsA𝑜r+𝑜s=B
51 eqeq1 z=tz=rst=rs
52 51 anbi1d z=tz=rsA𝑜r+𝑜s=Bt=rsA𝑜r+𝑜s=B
53 52 2rexbidv z=trOnsAz=rsA𝑜r+𝑜s=BrOnsAt=rsA𝑜r+𝑜s=B
54 50 53 bitrid z=txOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=B
55 54 eu4 ∃!zxOnyAz=xyA𝑜x+𝑜y=BzxOnyAz=xyA𝑜x+𝑜y=BztxOnyAz=xyA𝑜x+𝑜y=BrOnsAt=rsA𝑜r+𝑜s=Bz=t
56 12 38 55 sylanbrc AOnBOnA∃!zxOnyAz=xyA𝑜x+𝑜y=B