Metamath Proof Explorer


Theorem omopth2

Description: An ordered pair-like theorem for ordinal multiplication. (Contributed by Mario Carneiro, 29-May-2015)

Ref Expression
Assertion omopth2 A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E B = D C = E

Proof

Step Hyp Ref Expression
1 simpl2l A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E B On
2 eloni B On Ord B
3 1 2 syl A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E Ord B
4 simpl3l A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E D On
5 eloni D On Ord D
6 4 5 syl A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E Ord D
7 ordtri3or Ord B Ord D B D B = D D B
8 3 6 7 syl2anc A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E B D B = D D B
9 simpr A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E
10 simpl1l A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E A On
11 omcl A On D On A 𝑜 D On
12 10 4 11 syl2anc A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E A 𝑜 D On
13 simpl3r A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E E A
14 onelon A On E A E On
15 10 13 14 syl2anc A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E E On
16 oacl A 𝑜 D On E On A 𝑜 D + 𝑜 E On
17 12 15 16 syl2anc A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E A 𝑜 D + 𝑜 E On
18 eloni A 𝑜 D + 𝑜 E On Ord A 𝑜 D + 𝑜 E
19 ordirr Ord A 𝑜 D + 𝑜 E ¬ A 𝑜 D + 𝑜 E A 𝑜 D + 𝑜 E
20 17 18 19 3syl A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E ¬ A 𝑜 D + 𝑜 E A 𝑜 D + 𝑜 E
21 9 20 eqneltrd A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E ¬ A 𝑜 B + 𝑜 C A 𝑜 D + 𝑜 E
22 orc B D B D B = D C E
23 omeulem2 A On A B On C A D On E A B D B = D C E A 𝑜 B + 𝑜 C A 𝑜 D + 𝑜 E
24 23 adantr A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E B D B = D C E A 𝑜 B + 𝑜 C A 𝑜 D + 𝑜 E
25 22 24 syl5 A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E B D A 𝑜 B + 𝑜 C A 𝑜 D + 𝑜 E
26 21 25 mtod A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E ¬ B D
27 26 pm2.21d A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E B D B = D
28 idd A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E B = D B = D
29 20 9 neleqtrrd A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E ¬ A 𝑜 D + 𝑜 E A 𝑜 B + 𝑜 C
30 orc D B D B D = B E C
31 simpl1r A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E A
32 simpl2r A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E C A
33 omeulem2 A On A D On E A B On C A D B D = B E C A 𝑜 D + 𝑜 E A 𝑜 B + 𝑜 C
34 10 31 4 13 1 32 33 syl222anc A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E D B D = B E C A 𝑜 D + 𝑜 E A 𝑜 B + 𝑜 C
35 30 34 syl5 A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E D B A 𝑜 D + 𝑜 E A 𝑜 B + 𝑜 C
36 29 35 mtod A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E ¬ D B
37 36 pm2.21d A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E D B B = D
38 27 28 37 3jaod A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E B D B = D D B B = D
39 8 38 mpd A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E B = D
40 onelon A On C A C On
41 eloni C On Ord C
42 40 41 syl A On C A Ord C
43 10 32 42 syl2anc A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E Ord C
44 eloni E On Ord E
45 14 44 syl A On E A Ord E
46 10 13 45 syl2anc A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E Ord E
47 ordtri3or Ord C Ord E C E C = E E C
48 43 46 47 syl2anc A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E C E C = E E C
49 olc B = D C E B D B = D C E
50 49 24 syl5 A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E B = D C E A 𝑜 B + 𝑜 C A 𝑜 D + 𝑜 E
51 39 50 mpand A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E C E A 𝑜 B + 𝑜 C A 𝑜 D + 𝑜 E
52 21 51 mtod A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E ¬ C E
53 52 pm2.21d A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E C E C = E
54 idd A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E C = E C = E
55 39 eqcomd A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E D = B
56 olc D = B E C D B D = B E C
57 56 34 syl5 A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E D = B E C A 𝑜 D + 𝑜 E A 𝑜 B + 𝑜 C
58 55 57 mpand A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E E C A 𝑜 D + 𝑜 E A 𝑜 B + 𝑜 C
59 29 58 mtod A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E ¬ E C
60 59 pm2.21d A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E E C C = E
61 53 54 60 3jaod A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E C E C = E E C C = E
62 48 61 mpd A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E C = E
63 39 62 jca A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E B = D C = E
64 63 ex A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E B = D C = E
65 oveq2 B = D A 𝑜 B = A 𝑜 D
66 id C = E C = E
67 65 66 oveqan12d B = D C = E A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E
68 64 67 impbid1 A On A B On C A D On E A A 𝑜 B + 𝑜 C = A 𝑜 D + 𝑜 E B = D C = E