| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl2l |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → 𝐵 ∈ On ) |
| 2 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
| 3 |
1 2
|
syl |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → Ord 𝐵 ) |
| 4 |
|
simpl3l |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → 𝐷 ∈ On ) |
| 5 |
|
eloni |
⊢ ( 𝐷 ∈ On → Ord 𝐷 ) |
| 6 |
4 5
|
syl |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → Ord 𝐷 ) |
| 7 |
|
ordtri3or |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐷 ) → ( 𝐵 ∈ 𝐷 ∨ 𝐵 = 𝐷 ∨ 𝐷 ∈ 𝐵 ) ) |
| 8 |
3 6 7
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐵 ∈ 𝐷 ∨ 𝐵 = 𝐷 ∨ 𝐷 ∈ 𝐵 ) ) |
| 9 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) |
| 10 |
|
simpl1l |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → 𝐴 ∈ On ) |
| 11 |
|
omcl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐷 ∈ On ) → ( 𝐴 ·o 𝐷 ) ∈ On ) |
| 12 |
10 4 11
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐴 ·o 𝐷 ) ∈ On ) |
| 13 |
|
simpl3r |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → 𝐸 ∈ 𝐴 ) |
| 14 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ 𝐸 ∈ 𝐴 ) → 𝐸 ∈ On ) |
| 15 |
10 13 14
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → 𝐸 ∈ On ) |
| 16 |
|
oacl |
⊢ ( ( ( 𝐴 ·o 𝐷 ) ∈ On ∧ 𝐸 ∈ On ) → ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ∈ On ) |
| 17 |
12 15 16
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ∈ On ) |
| 18 |
|
eloni |
⊢ ( ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ∈ On → Ord ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) |
| 19 |
|
ordirr |
⊢ ( Ord ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) → ¬ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) |
| 20 |
17 18 19
|
3syl |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ¬ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) |
| 21 |
9 20
|
eqneltrd |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ¬ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) |
| 22 |
|
orc |
⊢ ( 𝐵 ∈ 𝐷 → ( 𝐵 ∈ 𝐷 ∨ ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) ) ) |
| 23 |
|
omeulem2 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( ( 𝐵 ∈ 𝐷 ∨ ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 24 |
23
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( ( 𝐵 ∈ 𝐷 ∨ ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 25 |
22 24
|
syl5 |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐵 ∈ 𝐷 → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 26 |
21 25
|
mtod |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ¬ 𝐵 ∈ 𝐷 ) |
| 27 |
26
|
pm2.21d |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐵 ∈ 𝐷 → 𝐵 = 𝐷 ) ) |
| 28 |
|
idd |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐵 = 𝐷 → 𝐵 = 𝐷 ) ) |
| 29 |
20 9
|
neleqtrrd |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ¬ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ) |
| 30 |
|
orc |
⊢ ( 𝐷 ∈ 𝐵 → ( 𝐷 ∈ 𝐵 ∨ ( 𝐷 = 𝐵 ∧ 𝐸 ∈ 𝐶 ) ) ) |
| 31 |
|
simpl1r |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → 𝐴 ≠ ∅ ) |
| 32 |
|
simpl2r |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → 𝐶 ∈ 𝐴 ) |
| 33 |
|
omeulem2 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ) → ( ( 𝐷 ∈ 𝐵 ∨ ( 𝐷 = 𝐵 ∧ 𝐸 ∈ 𝐶 ) ) → ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ) ) |
| 34 |
10 31 4 13 1 32 33
|
syl222anc |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( ( 𝐷 ∈ 𝐵 ∨ ( 𝐷 = 𝐵 ∧ 𝐸 ∈ 𝐶 ) ) → ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ) ) |
| 35 |
30 34
|
syl5 |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐷 ∈ 𝐵 → ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ) ) |
| 36 |
29 35
|
mtod |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ¬ 𝐷 ∈ 𝐵 ) |
| 37 |
36
|
pm2.21d |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐷 ∈ 𝐵 → 𝐵 = 𝐷 ) ) |
| 38 |
27 28 37
|
3jaod |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( ( 𝐵 ∈ 𝐷 ∨ 𝐵 = 𝐷 ∨ 𝐷 ∈ 𝐵 ) → 𝐵 = 𝐷 ) ) |
| 39 |
8 38
|
mpd |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → 𝐵 = 𝐷 ) |
| 40 |
|
onelon |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ On ) |
| 41 |
|
eloni |
⊢ ( 𝐶 ∈ On → Ord 𝐶 ) |
| 42 |
40 41
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐶 ∈ 𝐴 ) → Ord 𝐶 ) |
| 43 |
10 32 42
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → Ord 𝐶 ) |
| 44 |
|
eloni |
⊢ ( 𝐸 ∈ On → Ord 𝐸 ) |
| 45 |
14 44
|
syl |
⊢ ( ( 𝐴 ∈ On ∧ 𝐸 ∈ 𝐴 ) → Ord 𝐸 ) |
| 46 |
10 13 45
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → Ord 𝐸 ) |
| 47 |
|
ordtri3or |
⊢ ( ( Ord 𝐶 ∧ Ord 𝐸 ) → ( 𝐶 ∈ 𝐸 ∨ 𝐶 = 𝐸 ∨ 𝐸 ∈ 𝐶 ) ) |
| 48 |
43 46 47
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐶 ∈ 𝐸 ∨ 𝐶 = 𝐸 ∨ 𝐸 ∈ 𝐶 ) ) |
| 49 |
|
olc |
⊢ ( ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) → ( 𝐵 ∈ 𝐷 ∨ ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) ) ) |
| 50 |
49 24
|
syl5 |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( ( 𝐵 = 𝐷 ∧ 𝐶 ∈ 𝐸 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 51 |
39 50
|
mpand |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐶 ∈ 𝐸 → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ∈ ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) ) |
| 52 |
21 51
|
mtod |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ¬ 𝐶 ∈ 𝐸 ) |
| 53 |
52
|
pm2.21d |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐶 ∈ 𝐸 → 𝐶 = 𝐸 ) ) |
| 54 |
|
idd |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐶 = 𝐸 → 𝐶 = 𝐸 ) ) |
| 55 |
39
|
eqcomd |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → 𝐷 = 𝐵 ) |
| 56 |
|
olc |
⊢ ( ( 𝐷 = 𝐵 ∧ 𝐸 ∈ 𝐶 ) → ( 𝐷 ∈ 𝐵 ∨ ( 𝐷 = 𝐵 ∧ 𝐸 ∈ 𝐶 ) ) ) |
| 57 |
56 34
|
syl5 |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( ( 𝐷 = 𝐵 ∧ 𝐸 ∈ 𝐶 ) → ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ) ) |
| 58 |
55 57
|
mpand |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐸 ∈ 𝐶 → ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ∈ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) ) ) |
| 59 |
29 58
|
mtod |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ¬ 𝐸 ∈ 𝐶 ) |
| 60 |
59
|
pm2.21d |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐸 ∈ 𝐶 → 𝐶 = 𝐸 ) ) |
| 61 |
53 54 60
|
3jaod |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( ( 𝐶 ∈ 𝐸 ∨ 𝐶 = 𝐸 ∨ 𝐸 ∈ 𝐶 ) → 𝐶 = 𝐸 ) ) |
| 62 |
48 61
|
mpd |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → 𝐶 = 𝐸 ) |
| 63 |
39 62
|
jca |
⊢ ( ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) ∧ ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) → ( 𝐵 = 𝐷 ∧ 𝐶 = 𝐸 ) ) |
| 64 |
63
|
ex |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) → ( 𝐵 = 𝐷 ∧ 𝐶 = 𝐸 ) ) ) |
| 65 |
|
oveq2 |
⊢ ( 𝐵 = 𝐷 → ( 𝐴 ·o 𝐵 ) = ( 𝐴 ·o 𝐷 ) ) |
| 66 |
|
id |
⊢ ( 𝐶 = 𝐸 → 𝐶 = 𝐸 ) |
| 67 |
65 66
|
oveqan12d |
⊢ ( ( 𝐵 = 𝐷 ∧ 𝐶 = 𝐸 ) → ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ) |
| 68 |
64 67
|
impbid1 |
⊢ ( ( ( 𝐴 ∈ On ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ On ∧ 𝐶 ∈ 𝐴 ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ 𝐴 ) ) → ( ( ( 𝐴 ·o 𝐵 ) +o 𝐶 ) = ( ( 𝐴 ·o 𝐷 ) +o 𝐸 ) ↔ ( 𝐵 = 𝐷 ∧ 𝐶 = 𝐸 ) ) ) |