Metamath Proof Explorer


Theorem nnlim

Description: A natural number is not a limit ordinal. (Contributed by NM, 18-Oct-1995)

Ref Expression
Assertion nnlim ( 𝐴 ∈ ω → ¬ Lim 𝐴 )

Proof

Step Hyp Ref Expression
1 nnord ( 𝐴 ∈ ω → Ord 𝐴 )
2 ordirr ( Ord 𝐴 → ¬ 𝐴𝐴 )
3 1 2 syl ( 𝐴 ∈ ω → ¬ 𝐴𝐴 )
4 elom ( 𝐴 ∈ ω ↔ ( 𝐴 ∈ On ∧ ∀ 𝑥 ( Lim 𝑥𝐴𝑥 ) ) )
5 4 simprbi ( 𝐴 ∈ ω → ∀ 𝑥 ( Lim 𝑥𝐴𝑥 ) )
6 limeq ( 𝑥 = 𝐴 → ( Lim 𝑥 ↔ Lim 𝐴 ) )
7 eleq2 ( 𝑥 = 𝐴 → ( 𝐴𝑥𝐴𝐴 ) )
8 6 7 imbi12d ( 𝑥 = 𝐴 → ( ( Lim 𝑥𝐴𝑥 ) ↔ ( Lim 𝐴𝐴𝐴 ) ) )
9 8 spcgv ( 𝐴 ∈ ω → ( ∀ 𝑥 ( Lim 𝑥𝐴𝑥 ) → ( Lim 𝐴𝐴𝐴 ) ) )
10 5 9 mpd ( 𝐴 ∈ ω → ( Lim 𝐴𝐴𝐴 ) )
11 3 10 mtod ( 𝐴 ∈ ω → ¬ Lim 𝐴 )