Step |
Hyp |
Ref |
Expression |
1 |
|
nnord |
|- ( A e. _om -> Ord A ) |
2 |
|
ordirr |
|- ( Ord A -> -. A e. A ) |
3 |
1 2
|
syl |
|- ( A e. _om -> -. A e. A ) |
4 |
|
elom |
|- ( A e. _om <-> ( A e. On /\ A. x ( Lim x -> A e. x ) ) ) |
5 |
4
|
simprbi |
|- ( A e. _om -> A. x ( Lim x -> A e. x ) ) |
6 |
|
limeq |
|- ( x = A -> ( Lim x <-> Lim A ) ) |
7 |
|
eleq2 |
|- ( x = A -> ( A e. x <-> A e. A ) ) |
8 |
6 7
|
imbi12d |
|- ( x = A -> ( ( Lim x -> A e. x ) <-> ( Lim A -> A e. A ) ) ) |
9 |
8
|
spcgv |
|- ( A e. _om -> ( A. x ( Lim x -> A e. x ) -> ( Lim A -> A e. A ) ) ) |
10 |
5 9
|
mpd |
|- ( A e. _om -> ( Lim A -> A e. A ) ) |
11 |
3 10
|
mtod |
|- ( A e. _om -> -. Lim A ) |