Description: The class of natural numbers is a subclass of the class of non-limit ordinal numbers. Exercise 4 of TakeutiZaring p. 42. (Contributed by NM, 2-Nov-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omssnlim | |- _om C_ { x e. On | -. Lim x } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | omsson | |- _om C_ On | |
| 2 | nnlim | |- ( x e. _om -> -. Lim x ) | |
| 3 | 2 | rgen | |- A. x e. _om -. Lim x | 
| 4 | ssrab |  |-  ( _om C_ { x e. On | -. Lim x } <-> ( _om C_ On /\ A. x e. _om -. Lim x ) ) | |
| 5 | 1 3 4 | mpbir2an |  |-  _om C_ { x e. On | -. Lim x } |