Description: Omega is a subset of On . (Contributed by NM, 13-Jun-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omsson | |- _om C_ On | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-om |  |-  _om = { x e. On | A. y ( Lim y -> x e. y ) } | |
| 2 | 1 | ssrab3 | |- _om C_ On |