Metamath Proof Explorer


Definition df-om

Description: Define the class of natural numbers, which are all ordinal numbers that are less than every limit ordinal, i.e., all finite ordinals. Our definition is a variant of the Definition of N of BellMachover p. 471. See dfom2 for an alternate definition. Later, when we assume the Axiom of Infinity, we show _om is a set in omex , and _om can then be defined per dfom3 (the smallest inductive set) and dfom4 .

Note: the natural numbers _om are a subset of the ordinal numbers df-on . Later, when we define complex numbers, we will be able to also define a subset of the complex numbers ( df-nn ) with analogous properties and operations, but they will be different sets. (Contributed by NM, 15-May-1994)

Ref Expression
Assertion df-om
|- _om = { x e. On | A. y ( Lim y -> x e. y ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 com
 |-  _om
1 vx
 |-  x
2 con0
 |-  On
3 vy
 |-  y
4 3 cv
 |-  y
5 4 wlim
 |-  Lim y
6 1 cv
 |-  x
7 6 4 wcel
 |-  x e. y
8 5 7 wi
 |-  ( Lim y -> x e. y )
9 8 3 wal
 |-  A. y ( Lim y -> x e. y )
10 9 1 2 crab
 |-  { x e. On | A. y ( Lim y -> x e. y ) }
11 0 10 wceq
 |-  _om = { x e. On | A. y ( Lim y -> x e. y ) }