| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq2 |
|- ( B = (/) -> ( A e. B <-> A e. (/) ) ) |
| 2 |
|
noel |
|- -. A e. (/) |
| 3 |
2
|
pm2.21i |
|- ( A e. (/) -> suc A e. B ) |
| 4 |
1 3
|
biimtrdi |
|- ( B = (/) -> ( A e. B -> suc A e. B ) ) |
| 5 |
4
|
com12 |
|- ( A e. B -> ( B = (/) -> suc A e. B ) ) |
| 6 |
|
simpl |
|- ( ( A e. B /\ ( B = ( _om .o C ) /\ C e. ( On \ 1o ) ) ) -> A e. B ) |
| 7 |
|
eldifi |
|- ( C e. ( On \ 1o ) -> C e. On ) |
| 8 |
7
|
ad2antll |
|- ( ( A e. B /\ ( B = ( _om .o C ) /\ C e. ( On \ 1o ) ) ) -> C e. On ) |
| 9 |
|
omex |
|- _om e. _V |
| 10 |
|
limom |
|- Lim _om |
| 11 |
9 10
|
pm3.2i |
|- ( _om e. _V /\ Lim _om ) |
| 12 |
11
|
a1i |
|- ( ( A e. B /\ ( B = ( _om .o C ) /\ C e. ( On \ 1o ) ) ) -> ( _om e. _V /\ Lim _om ) ) |
| 13 |
|
ondif1 |
|- ( C e. ( On \ 1o ) <-> ( C e. On /\ (/) e. C ) ) |
| 14 |
13
|
simprbi |
|- ( C e. ( On \ 1o ) -> (/) e. C ) |
| 15 |
14
|
ad2antll |
|- ( ( A e. B /\ ( B = ( _om .o C ) /\ C e. ( On \ 1o ) ) ) -> (/) e. C ) |
| 16 |
|
omlimcl2 |
|- ( ( ( C e. On /\ ( _om e. _V /\ Lim _om ) ) /\ (/) e. C ) -> Lim ( _om .o C ) ) |
| 17 |
8 12 15 16
|
syl21anc |
|- ( ( A e. B /\ ( B = ( _om .o C ) /\ C e. ( On \ 1o ) ) ) -> Lim ( _om .o C ) ) |
| 18 |
|
limeq |
|- ( B = ( _om .o C ) -> ( Lim B <-> Lim ( _om .o C ) ) ) |
| 19 |
18
|
ad2antrl |
|- ( ( A e. B /\ ( B = ( _om .o C ) /\ C e. ( On \ 1o ) ) ) -> ( Lim B <-> Lim ( _om .o C ) ) ) |
| 20 |
17 19
|
mpbird |
|- ( ( A e. B /\ ( B = ( _om .o C ) /\ C e. ( On \ 1o ) ) ) -> Lim B ) |
| 21 |
|
limsuc |
|- ( Lim B -> ( A e. B <-> suc A e. B ) ) |
| 22 |
20 21
|
syl |
|- ( ( A e. B /\ ( B = ( _om .o C ) /\ C e. ( On \ 1o ) ) ) -> ( A e. B <-> suc A e. B ) ) |
| 23 |
6 22
|
mpbid |
|- ( ( A e. B /\ ( B = ( _om .o C ) /\ C e. ( On \ 1o ) ) ) -> suc A e. B ) |
| 24 |
23
|
ex |
|- ( A e. B -> ( ( B = ( _om .o C ) /\ C e. ( On \ 1o ) ) -> suc A e. B ) ) |
| 25 |
5 24
|
jaod |
|- ( A e. B -> ( ( B = (/) \/ ( B = ( _om .o C ) /\ C e. ( On \ 1o ) ) ) -> suc A e. B ) ) |
| 26 |
25
|
imp |
|- ( ( A e. B /\ ( B = (/) \/ ( B = ( _om .o C ) /\ C e. ( On \ 1o ) ) ) ) -> suc A e. B ) |