Metamath Proof Explorer


Theorem succlg

Description: Closure law for ordinal successor. (Contributed by RP, 8-Jan-2025)

Ref Expression
Assertion succlg A B B = B = ω 𝑜 C C On 1 𝑜 suc A B

Proof

Step Hyp Ref Expression
1 eleq2 B = A B A
2 noel ¬ A
3 2 pm2.21i A suc A B
4 1 3 biimtrdi B = A B suc A B
5 4 com12 A B B = suc A B
6 simpl A B B = ω 𝑜 C C On 1 𝑜 A B
7 eldifi C On 1 𝑜 C On
8 7 ad2antll A B B = ω 𝑜 C C On 1 𝑜 C On
9 omex ω V
10 limom Lim ω
11 9 10 pm3.2i ω V Lim ω
12 11 a1i A B B = ω 𝑜 C C On 1 𝑜 ω V Lim ω
13 ondif1 C On 1 𝑜 C On C
14 13 simprbi C On 1 𝑜 C
15 14 ad2antll A B B = ω 𝑜 C C On 1 𝑜 C
16 omlimcl2 C On ω V Lim ω C Lim ω 𝑜 C
17 8 12 15 16 syl21anc A B B = ω 𝑜 C C On 1 𝑜 Lim ω 𝑜 C
18 limeq B = ω 𝑜 C Lim B Lim ω 𝑜 C
19 18 ad2antrl A B B = ω 𝑜 C C On 1 𝑜 Lim B Lim ω 𝑜 C
20 17 19 mpbird A B B = ω 𝑜 C C On 1 𝑜 Lim B
21 limsuc Lim B A B suc A B
22 20 21 syl A B B = ω 𝑜 C C On 1 𝑜 A B suc A B
23 6 22 mpbid A B B = ω 𝑜 C C On 1 𝑜 suc A B
24 23 ex A B B = ω 𝑜 C C On 1 𝑜 suc A B
25 5 24 jaod A B B = B = ω 𝑜 C C On 1 𝑜 suc A B
26 25 imp A B B = B = ω 𝑜 C C On 1 𝑜 suc A B