Metamath Proof Explorer


Theorem nnawordexg

Description: If an ordinal, B , is in a half-open interval between some A and the next limit ordinal, B is the sum of the A and some natural number. This weakens the antecedent of nnawordex . (Contributed by RP, 7-Jan-2025)

Ref Expression
Assertion nnawordexg
|- ( ( A e. On /\ A C_ B /\ B e. ( A +o _om ) ) -> E. x e. _om ( A +o x ) = B )

Proof

Step Hyp Ref Expression
1 simp1
 |-  ( ( A e. On /\ A C_ B /\ B e. ( A +o _om ) ) -> A e. On )
2 omelon
 |-  _om e. On
3 2 a1i
 |-  ( ( A e. On /\ A C_ B /\ B e. ( A +o _om ) ) -> _om e. On )
4 3simpc
 |-  ( ( A e. On /\ A C_ B /\ B e. ( A +o _om ) ) -> ( A C_ B /\ B e. ( A +o _om ) ) )
5 oawordex2
 |-  ( ( ( A e. On /\ _om e. On ) /\ ( A C_ B /\ B e. ( A +o _om ) ) ) -> E. x e. _om ( A +o x ) = B )
6 1 3 4 5 syl21anc
 |-  ( ( A e. On /\ A C_ B /\ B e. ( A +o _om ) ) -> E. x e. _om ( A +o x ) = B )