Step |
Hyp |
Ref |
Expression |
1 |
|
simprl |
|- ( ( ( A e. On /\ B e. On ) /\ ( A C_ C /\ C e. ( A +o B ) ) ) -> A C_ C ) |
2 |
|
simpll |
|- ( ( ( A e. On /\ B e. On ) /\ ( A C_ C /\ C e. ( A +o B ) ) ) -> A e. On ) |
3 |
|
oacl |
|- ( ( A e. On /\ B e. On ) -> ( A +o B ) e. On ) |
4 |
|
simpr |
|- ( ( A C_ C /\ C e. ( A +o B ) ) -> C e. ( A +o B ) ) |
5 |
|
onelon |
|- ( ( ( A +o B ) e. On /\ C e. ( A +o B ) ) -> C e. On ) |
6 |
3 4 5
|
syl2an |
|- ( ( ( A e. On /\ B e. On ) /\ ( A C_ C /\ C e. ( A +o B ) ) ) -> C e. On ) |
7 |
|
oawordex |
|- ( ( A e. On /\ C e. On ) -> ( A C_ C <-> E. x e. On ( A +o x ) = C ) ) |
8 |
2 6 7
|
syl2anc |
|- ( ( ( A e. On /\ B e. On ) /\ ( A C_ C /\ C e. ( A +o B ) ) ) -> ( A C_ C <-> E. x e. On ( A +o x ) = C ) ) |
9 |
1 8
|
mpbid |
|- ( ( ( A e. On /\ B e. On ) /\ ( A C_ C /\ C e. ( A +o B ) ) ) -> E. x e. On ( A +o x ) = C ) |
10 |
|
simprr |
|- ( ( ( ( A e. On /\ B e. On ) /\ ( A C_ C /\ C e. ( A +o B ) ) ) /\ ( x e. On /\ ( A +o x ) = C ) ) -> ( A +o x ) = C ) |
11 |
|
simprr |
|- ( ( ( A e. On /\ B e. On ) /\ ( A C_ C /\ C e. ( A +o B ) ) ) -> C e. ( A +o B ) ) |
12 |
11
|
adantr |
|- ( ( ( ( A e. On /\ B e. On ) /\ ( A C_ C /\ C e. ( A +o B ) ) ) /\ ( x e. On /\ ( A +o x ) = C ) ) -> C e. ( A +o B ) ) |
13 |
10 12
|
eqeltrd |
|- ( ( ( ( A e. On /\ B e. On ) /\ ( A C_ C /\ C e. ( A +o B ) ) ) /\ ( x e. On /\ ( A +o x ) = C ) ) -> ( A +o x ) e. ( A +o B ) ) |
14 |
|
simprl |
|- ( ( ( ( A e. On /\ B e. On ) /\ ( A C_ C /\ C e. ( A +o B ) ) ) /\ ( x e. On /\ ( A +o x ) = C ) ) -> x e. On ) |
15 |
|
simpllr |
|- ( ( ( ( A e. On /\ B e. On ) /\ ( A C_ C /\ C e. ( A +o B ) ) ) /\ ( x e. On /\ ( A +o x ) = C ) ) -> B e. On ) |
16 |
2
|
adantr |
|- ( ( ( ( A e. On /\ B e. On ) /\ ( A C_ C /\ C e. ( A +o B ) ) ) /\ ( x e. On /\ ( A +o x ) = C ) ) -> A e. On ) |
17 |
|
oaord |
|- ( ( x e. On /\ B e. On /\ A e. On ) -> ( x e. B <-> ( A +o x ) e. ( A +o B ) ) ) |
18 |
14 15 16 17
|
syl3anc |
|- ( ( ( ( A e. On /\ B e. On ) /\ ( A C_ C /\ C e. ( A +o B ) ) ) /\ ( x e. On /\ ( A +o x ) = C ) ) -> ( x e. B <-> ( A +o x ) e. ( A +o B ) ) ) |
19 |
13 18
|
mpbird |
|- ( ( ( ( A e. On /\ B e. On ) /\ ( A C_ C /\ C e. ( A +o B ) ) ) /\ ( x e. On /\ ( A +o x ) = C ) ) -> x e. B ) |
20 |
9 19 10
|
reximssdv |
|- ( ( ( A e. On /\ B e. On ) /\ ( A C_ C /\ C e. ( A +o B ) ) ) -> E. x e. B ( A +o x ) = C ) |