Step |
Hyp |
Ref |
Expression |
1 |
|
tfsconcat.op |
|- .+ = ( a e. _V , b e. _V |-> ( a u. { <. x , y >. | ( x e. ( ( dom a +o dom b ) \ dom a ) /\ E. z e. dom b ( x = ( dom a +o z ) /\ y = ( b ` z ) ) ) } ) ) |
2 |
1
|
a1i |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> .+ = ( a e. _V , b e. _V |-> ( a u. { <. x , y >. | ( x e. ( ( dom a +o dom b ) \ dom a ) /\ E. z e. dom b ( x = ( dom a +o z ) /\ y = ( b ` z ) ) ) } ) ) ) |
3 |
|
simprl |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ ( a = A /\ b = B ) ) -> a = A ) |
4 |
|
dmeq |
|- ( a = A -> dom a = dom A ) |
5 |
4
|
adantr |
|- ( ( a = A /\ b = B ) -> dom a = dom A ) |
6 |
|
fndm |
|- ( A Fn C -> dom A = C ) |
7 |
6
|
adantr |
|- ( ( A Fn C /\ B Fn D ) -> dom A = C ) |
8 |
7
|
adantr |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> dom A = C ) |
9 |
5 8
|
sylan9eqr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ ( a = A /\ b = B ) ) -> dom a = C ) |
10 |
|
dmeq |
|- ( b = B -> dom b = dom B ) |
11 |
10
|
adantl |
|- ( ( a = A /\ b = B ) -> dom b = dom B ) |
12 |
|
fndm |
|- ( B Fn D -> dom B = D ) |
13 |
12
|
adantl |
|- ( ( A Fn C /\ B Fn D ) -> dom B = D ) |
14 |
13
|
adantr |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> dom B = D ) |
15 |
11 14
|
sylan9eqr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ ( a = A /\ b = B ) ) -> dom b = D ) |
16 |
9 15
|
oveq12d |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ ( a = A /\ b = B ) ) -> ( dom a +o dom b ) = ( C +o D ) ) |
17 |
16 9
|
difeq12d |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ ( a = A /\ b = B ) ) -> ( ( dom a +o dom b ) \ dom a ) = ( ( C +o D ) \ C ) ) |
18 |
17
|
eleq2d |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ ( a = A /\ b = B ) ) -> ( x e. ( ( dom a +o dom b ) \ dom a ) <-> x e. ( ( C +o D ) \ C ) ) ) |
19 |
9
|
oveq1d |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ ( a = A /\ b = B ) ) -> ( dom a +o z ) = ( C +o z ) ) |
20 |
19
|
eqeq2d |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ ( a = A /\ b = B ) ) -> ( x = ( dom a +o z ) <-> x = ( C +o z ) ) ) |
21 |
|
fveq1 |
|- ( b = B -> ( b ` z ) = ( B ` z ) ) |
22 |
21
|
eqeq2d |
|- ( b = B -> ( y = ( b ` z ) <-> y = ( B ` z ) ) ) |
23 |
22
|
adantl |
|- ( ( a = A /\ b = B ) -> ( y = ( b ` z ) <-> y = ( B ` z ) ) ) |
24 |
23
|
adantl |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ ( a = A /\ b = B ) ) -> ( y = ( b ` z ) <-> y = ( B ` z ) ) ) |
25 |
20 24
|
anbi12d |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ ( a = A /\ b = B ) ) -> ( ( x = ( dom a +o z ) /\ y = ( b ` z ) ) <-> ( x = ( C +o z ) /\ y = ( B ` z ) ) ) ) |
26 |
15 25
|
rexeqbidv |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ ( a = A /\ b = B ) ) -> ( E. z e. dom b ( x = ( dom a +o z ) /\ y = ( b ` z ) ) <-> E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) ) |
27 |
18 26
|
anbi12d |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ ( a = A /\ b = B ) ) -> ( ( x e. ( ( dom a +o dom b ) \ dom a ) /\ E. z e. dom b ( x = ( dom a +o z ) /\ y = ( b ` z ) ) ) <-> ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) ) ) |
28 |
27
|
opabbidv |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ ( a = A /\ b = B ) ) -> { <. x , y >. | ( x e. ( ( dom a +o dom b ) \ dom a ) /\ E. z e. dom b ( x = ( dom a +o z ) /\ y = ( b ` z ) ) ) } = { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) |
29 |
3 28
|
uneq12d |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ ( a = A /\ b = B ) ) -> ( a u. { <. x , y >. | ( x e. ( ( dom a +o dom b ) \ dom a ) /\ E. z e. dom b ( x = ( dom a +o z ) /\ y = ( b ` z ) ) ) } ) = ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) ) |
30 |
|
fnex |
|- ( ( A Fn C /\ C e. On ) -> A e. _V ) |
31 |
30
|
ad2ant2r |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> A e. _V ) |
32 |
|
fnex |
|- ( ( B Fn D /\ D e. On ) -> B e. _V ) |
33 |
32
|
ad2ant2l |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> B e. _V ) |
34 |
|
oacl |
|- ( ( C e. On /\ D e. On ) -> ( C +o D ) e. On ) |
35 |
34
|
difexd |
|- ( ( C e. On /\ D e. On ) -> ( ( C +o D ) \ C ) e. _V ) |
36 |
35
|
adantl |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( ( C +o D ) \ C ) e. _V ) |
37 |
|
simplrl |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> C e. On ) |
38 |
|
simplrr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> D e. On ) |
39 |
|
simpr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> x e. ( ( C +o D ) \ C ) ) |
40 |
|
tfsconcatlem |
|- ( ( C e. On /\ D e. On /\ x e. ( ( C +o D ) \ C ) ) -> E! y E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) |
41 |
37 38 39 40
|
syl3anc |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> E! y E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) |
42 |
|
euabex |
|- ( E! y E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) -> { y | E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) } e. _V ) |
43 |
41 42
|
syl |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> { y | E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) } e. _V ) |
44 |
36 43
|
opabex3d |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } e. _V ) |
45 |
31 44
|
unexd |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) e. _V ) |
46 |
2 29 31 33 45
|
ovmpod |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( A .+ B ) = ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) ) |