Metamath Proof Explorer


Theorem tfsconcatfn

Description: The concatenation of two transfinite series is a transfinite series. (Contributed by RP, 22-Feb-2025)

Ref Expression
Hypothesis tfsconcat.op + ˙ = a V , b V a x y | x dom a + 𝑜 dom b dom a z dom b x = dom a + 𝑜 z y = b z
Assertion tfsconcatfn A Fn C B Fn D C On D On A + ˙ B Fn C + 𝑜 D

Proof

Step Hyp Ref Expression
1 tfsconcat.op + ˙ = a V , b V a x y | x dom a + 𝑜 dom b dom a z dom b x = dom a + 𝑜 z y = b z
2 simpll A Fn C B Fn D C On D On A Fn C
3 simplrl A Fn C B Fn D C On D On x C + 𝑜 D C C On
4 simplrr A Fn C B Fn D C On D On x C + 𝑜 D C D On
5 simpr A Fn C B Fn D C On D On x C + 𝑜 D C x C + 𝑜 D C
6 tfsconcatlem C On D On x C + 𝑜 D C ∃! y z D x = C + 𝑜 z y = B z
7 3 4 5 6 syl3anc A Fn C B Fn D C On D On x C + 𝑜 D C ∃! y z D x = C + 𝑜 z y = B z
8 7 ralrimiva A Fn C B Fn D C On D On x C + 𝑜 D C ∃! y z D x = C + 𝑜 z y = B z
9 eqid x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z = x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z
10 9 fnopabg x C + 𝑜 D C ∃! y z D x = C + 𝑜 z y = B z x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z Fn C + 𝑜 D C
11 8 10 sylib A Fn C B Fn D C On D On x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z Fn C + 𝑜 D C
12 disjdif C C + 𝑜 D C =
13 12 a1i A Fn C B Fn D C On D On C C + 𝑜 D C =
14 2 11 13 fnund A Fn C B Fn D C On D On A x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z Fn C C + 𝑜 D C
15 1 tfsconcatun A Fn C B Fn D C On D On A + ˙ B = A x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z
16 oaword1 C On D On C C + 𝑜 D
17 undif C C + 𝑜 D C C + 𝑜 D C = C + 𝑜 D
18 16 17 sylib C On D On C C + 𝑜 D C = C + 𝑜 D
19 18 eqcomd C On D On C + 𝑜 D = C C + 𝑜 D C
20 19 adantl A Fn C B Fn D C On D On C + 𝑜 D = C C + 𝑜 D C
21 15 20 fneq12d A Fn C B Fn D C On D On A + ˙ B Fn C + 𝑜 D A x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z Fn C C + 𝑜 D C
22 14 21 mpbird A Fn C B Fn D C On D On A + ˙ B Fn C + 𝑜 D