Metamath Proof Explorer


Theorem tfsconcatfv1

Description: An early value of the concatenation of two transfinite series. (Contributed by RP, 23-Feb-2025)

Ref Expression
Hypothesis tfsconcat.op + ˙ = a V , b V a x y | x dom a + 𝑜 dom b dom a z dom b x = dom a + 𝑜 z y = b z
Assertion tfsconcatfv1 A Fn C B Fn D C On D On X C A + ˙ B X = A X

Proof

Step Hyp Ref Expression
1 tfsconcat.op + ˙ = a V , b V a x y | x dom a + 𝑜 dom b dom a z dom b x = dom a + 𝑜 z y = b z
2 1 tfsconcatun A Fn C B Fn D C On D On A + ˙ B = A x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z
3 2 fveq1d A Fn C B Fn D C On D On A + ˙ B X = A x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z X
4 3 adantr A Fn C B Fn D C On D On X C A + ˙ B X = A x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z X
5 simplll A Fn C B Fn D C On D On X C A Fn C
6 simplrl A Fn C B Fn D C On D On x C + 𝑜 D C C On
7 simplrr A Fn C B Fn D C On D On x C + 𝑜 D C D On
8 simpr A Fn C B Fn D C On D On x C + 𝑜 D C x C + 𝑜 D C
9 tfsconcatlem C On D On x C + 𝑜 D C ∃! y z D x = C + 𝑜 z y = B z
10 6 7 8 9 syl3anc A Fn C B Fn D C On D On x C + 𝑜 D C ∃! y z D x = C + 𝑜 z y = B z
11 10 ralrimiva A Fn C B Fn D C On D On x C + 𝑜 D C ∃! y z D x = C + 𝑜 z y = B z
12 11 adantr A Fn C B Fn D C On D On X C x C + 𝑜 D C ∃! y z D x = C + 𝑜 z y = B z
13 eqid x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z = x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z
14 13 fnopabg x C + 𝑜 D C ∃! y z D x = C + 𝑜 z y = B z x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z Fn C + 𝑜 D C
15 12 14 sylib A Fn C B Fn D C On D On X C x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z Fn C + 𝑜 D C
16 disjdif C C + 𝑜 D C =
17 16 a1i A Fn C B Fn D C On D On X C C C + 𝑜 D C =
18 simpr A Fn C B Fn D C On D On X C X C
19 5 15 17 18 fvun1d A Fn C B Fn D C On D On X C A x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z X = A X
20 4 19 eqtrd A Fn C B Fn D C On D On X C A + ˙ B X = A X