Metamath Proof Explorer


Theorem fvun1d

Description: The value of a union when the argument is in the first domain, a deduction version. (Contributed by metakunt, 28-May-2024)

Ref Expression
Hypotheses fvun1d.1 φFFnA
fvun1d.2 φGFnB
fvun1d.3 φAB=
fvun1d.4 φXA
Assertion fvun1d φFGX=FX

Proof

Step Hyp Ref Expression
1 fvun1d.1 φFFnA
2 fvun1d.2 φGFnB
3 fvun1d.3 φAB=
4 fvun1d.4 φXA
5 3 4 jca φAB=XA
6 1 2 5 3jca φFFnAGFnBAB=XA
7 fvun1 FFnAGFnBAB=XAFGX=FX
8 6 7 syl φFGX=FX