Step |
Hyp |
Ref |
Expression |
1 |
|
tfsconcat.op |
|- .+ = ( a e. _V , b e. _V |-> ( a u. { <. x , y >. | ( x e. ( ( dom a +o dom b ) \ dom a ) /\ E. z e. dom b ( x = ( dom a +o z ) /\ y = ( b ` z ) ) ) } ) ) |
2 |
1
|
tfsconcatun |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( A .+ B ) = ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) ) |
3 |
2
|
fveq1d |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( ( A .+ B ) ` X ) = ( ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) ` X ) ) |
4 |
3
|
adantr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. C ) -> ( ( A .+ B ) ` X ) = ( ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) ` X ) ) |
5 |
|
simplll |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. C ) -> A Fn C ) |
6 |
|
simplrl |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> C e. On ) |
7 |
|
simplrr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> D e. On ) |
8 |
|
simpr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> x e. ( ( C +o D ) \ C ) ) |
9 |
|
tfsconcatlem |
|- ( ( C e. On /\ D e. On /\ x e. ( ( C +o D ) \ C ) ) -> E! y E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) |
10 |
6 7 8 9
|
syl3anc |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> E! y E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) |
11 |
10
|
ralrimiva |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> A. x e. ( ( C +o D ) \ C ) E! y E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) |
12 |
11
|
adantr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. C ) -> A. x e. ( ( C +o D ) \ C ) E! y E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) |
13 |
|
eqid |
|- { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } = { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } |
14 |
13
|
fnopabg |
|- ( A. x e. ( ( C +o D ) \ C ) E! y E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) <-> { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } Fn ( ( C +o D ) \ C ) ) |
15 |
12 14
|
sylib |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. C ) -> { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } Fn ( ( C +o D ) \ C ) ) |
16 |
|
disjdif |
|- ( C i^i ( ( C +o D ) \ C ) ) = (/) |
17 |
16
|
a1i |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. C ) -> ( C i^i ( ( C +o D ) \ C ) ) = (/) ) |
18 |
|
simpr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. C ) -> X e. C ) |
19 |
5 15 17 18
|
fvun1d |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. C ) -> ( ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) ` X ) = ( A ` X ) ) |
20 |
4 19
|
eqtrd |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. C ) -> ( ( A .+ B ) ` X ) = ( A ` X ) ) |