| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tfsconcat.op |
⊢ + = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑎 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( dom 𝑎 +o dom 𝑏 ) ∖ dom 𝑎 ) ∧ ∃ 𝑧 ∈ dom 𝑏 ( 𝑥 = ( dom 𝑎 +o 𝑧 ) ∧ 𝑦 = ( 𝑏 ‘ 𝑧 ) ) ) } ) ) |
| 2 |
1
|
tfsconcatun |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝐴 + 𝐵 ) = ( 𝐴 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ) ) |
| 3 |
2
|
fveq1d |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 + 𝐵 ) ‘ 𝑋 ) = ( ( 𝐴 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ) ‘ 𝑋 ) ) |
| 4 |
3
|
adantr |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝐴 + 𝐵 ) ‘ 𝑋 ) = ( ( 𝐴 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ) ‘ 𝑋 ) ) |
| 5 |
|
simplll |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐶 ) → 𝐴 Fn 𝐶 ) |
| 6 |
|
simplrl |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → 𝐶 ∈ On ) |
| 7 |
|
simplrr |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → 𝐷 ∈ On ) |
| 8 |
|
simpr |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) |
| 9 |
|
tfsconcatlem |
⊢ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ∧ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → ∃! 𝑦 ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) |
| 10 |
6 7 8 9
|
syl3anc |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → ∃! 𝑦 ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) |
| 11 |
10
|
ralrimiva |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ∀ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∃! 𝑦 ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) |
| 12 |
11
|
adantr |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐶 ) → ∀ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∃! 𝑦 ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) |
| 13 |
|
eqid |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } |
| 14 |
13
|
fnopabg |
⊢ ( ∀ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∃! 𝑦 ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ↔ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } Fn ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) |
| 15 |
12 14
|
sylib |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐶 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } Fn ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) |
| 16 |
|
disjdif |
⊢ ( 𝐶 ∩ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) = ∅ |
| 17 |
16
|
a1i |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐶 ) → ( 𝐶 ∩ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) = ∅ ) |
| 18 |
|
simpr |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ∈ 𝐶 ) |
| 19 |
5 15 17 18
|
fvun1d |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝐴 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ) ‘ 𝑋 ) = ( 𝐴 ‘ 𝑋 ) ) |
| 20 |
4 19
|
eqtrd |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝐴 + 𝐵 ) ‘ 𝑋 ) = ( 𝐴 ‘ 𝑋 ) ) |