Step |
Hyp |
Ref |
Expression |
1 |
|
tfsconcat.op |
⊢ + = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑎 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( dom 𝑎 +o dom 𝑏 ) ∖ dom 𝑎 ) ∧ ∃ 𝑧 ∈ dom 𝑏 ( 𝑥 = ( dom 𝑎 +o 𝑧 ) ∧ 𝑦 = ( 𝑏 ‘ 𝑧 ) ) ) } ) ) |
2 |
1
|
tfsconcatun |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝐴 + 𝐵 ) = ( 𝐴 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ) ) |
3 |
2
|
fveq1d |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 + 𝐵 ) ‘ ( 𝐶 +o 𝑋 ) ) = ( ( 𝐴 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ) ‘ ( 𝐶 +o 𝑋 ) ) ) |
4 |
3
|
adantr |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐷 ) → ( ( 𝐴 + 𝐵 ) ‘ ( 𝐶 +o 𝑋 ) ) = ( ( 𝐴 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ) ‘ ( 𝐶 +o 𝑋 ) ) ) |
5 |
|
simplll |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐷 ) → 𝐴 Fn 𝐶 ) |
6 |
|
simplrl |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → 𝐶 ∈ On ) |
7 |
|
simplrr |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → 𝐷 ∈ On ) |
8 |
|
simpr |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) |
9 |
|
tfsconcatlem |
⊢ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ∧ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → ∃! 𝑦 ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) |
10 |
6 7 8 9
|
syl3anc |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → ∃! 𝑦 ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) |
11 |
10
|
ralrimiva |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ∀ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∃! 𝑦 ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) |
12 |
|
eqid |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } |
13 |
12
|
fnopabg |
⊢ ( ∀ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∃! 𝑦 ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ↔ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } Fn ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) |
14 |
11 13
|
sylib |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } Fn ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) |
15 |
14
|
adantr |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐷 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } Fn ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) |
16 |
|
disjdif |
⊢ ( 𝐶 ∩ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) = ∅ |
17 |
16
|
a1i |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐷 ) → ( 𝐶 ∩ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) = ∅ ) |
18 |
|
pm3.22 |
⊢ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → ( 𝐷 ∈ On ∧ 𝐶 ∈ On ) ) |
19 |
18
|
adantl |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝐷 ∈ On ∧ 𝐶 ∈ On ) ) |
20 |
|
oaordi |
⊢ ( ( 𝐷 ∈ On ∧ 𝐶 ∈ On ) → ( 𝑋 ∈ 𝐷 → ( 𝐶 +o 𝑋 ) ∈ ( 𝐶 +o 𝐷 ) ) ) |
21 |
19 20
|
syl |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝑋 ∈ 𝐷 → ( 𝐶 +o 𝑋 ) ∈ ( 𝐶 +o 𝐷 ) ) ) |
22 |
21
|
imp |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐷 ) → ( 𝐶 +o 𝑋 ) ∈ ( 𝐶 +o 𝐷 ) ) |
23 |
|
simplrl |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐷 ) → 𝐶 ∈ On ) |
24 |
|
simpr |
⊢ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → 𝐷 ∈ On ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → 𝐷 ∈ On ) |
26 |
|
onelon |
⊢ ( ( 𝐷 ∈ On ∧ 𝑋 ∈ 𝐷 ) → 𝑋 ∈ On ) |
27 |
25 26
|
sylan |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐷 ) → 𝑋 ∈ On ) |
28 |
|
oaword1 |
⊢ ( ( 𝐶 ∈ On ∧ 𝑋 ∈ On ) → 𝐶 ⊆ ( 𝐶 +o 𝑋 ) ) |
29 |
23 27 28
|
syl2anc |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐷 ) → 𝐶 ⊆ ( 𝐶 +o 𝑋 ) ) |
30 |
|
oacl |
⊢ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → ( 𝐶 +o 𝐷 ) ∈ On ) |
31 |
|
eloni |
⊢ ( ( 𝐶 +o 𝐷 ) ∈ On → Ord ( 𝐶 +o 𝐷 ) ) |
32 |
30 31
|
syl |
⊢ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → Ord ( 𝐶 +o 𝐷 ) ) |
33 |
|
eloni |
⊢ ( 𝐶 ∈ On → Ord 𝐶 ) |
34 |
33
|
adantr |
⊢ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → Ord 𝐶 ) |
35 |
32 34
|
jca |
⊢ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → ( Ord ( 𝐶 +o 𝐷 ) ∧ Ord 𝐶 ) ) |
36 |
35
|
adantl |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( Ord ( 𝐶 +o 𝐷 ) ∧ Ord 𝐶 ) ) |
37 |
36
|
adantr |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐷 ) → ( Ord ( 𝐶 +o 𝐷 ) ∧ Ord 𝐶 ) ) |
38 |
|
ordeldif |
⊢ ( ( Ord ( 𝐶 +o 𝐷 ) ∧ Ord 𝐶 ) → ( ( 𝐶 +o 𝑋 ) ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ↔ ( ( 𝐶 +o 𝑋 ) ∈ ( 𝐶 +o 𝐷 ) ∧ 𝐶 ⊆ ( 𝐶 +o 𝑋 ) ) ) ) |
39 |
37 38
|
syl |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐷 ) → ( ( 𝐶 +o 𝑋 ) ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ↔ ( ( 𝐶 +o 𝑋 ) ∈ ( 𝐶 +o 𝐷 ) ∧ 𝐶 ⊆ ( 𝐶 +o 𝑋 ) ) ) ) |
40 |
22 29 39
|
mpbir2and |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐷 ) → ( 𝐶 +o 𝑋 ) ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) |
41 |
5 15 17 40
|
fvun2d |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐷 ) → ( ( 𝐴 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ) ‘ ( 𝐶 +o 𝑋 ) ) = ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ‘ ( 𝐶 +o 𝑋 ) ) ) |
42 |
|
eqid |
⊢ ( 𝐶 +o 𝑋 ) = ( 𝐶 +o 𝑋 ) |
43 |
|
eqid |
⊢ ( 𝐵 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑋 ) |
44 |
|
oveq2 |
⊢ ( 𝑧 = 𝑋 → ( 𝐶 +o 𝑧 ) = ( 𝐶 +o 𝑋 ) ) |
45 |
44
|
eqeq2d |
⊢ ( 𝑧 = 𝑋 → ( ( 𝐶 +o 𝑋 ) = ( 𝐶 +o 𝑧 ) ↔ ( 𝐶 +o 𝑋 ) = ( 𝐶 +o 𝑋 ) ) ) |
46 |
|
fveq2 |
⊢ ( 𝑧 = 𝑋 → ( 𝐵 ‘ 𝑧 ) = ( 𝐵 ‘ 𝑋 ) ) |
47 |
46
|
eqeq2d |
⊢ ( 𝑧 = 𝑋 → ( ( 𝐵 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑧 ) ↔ ( 𝐵 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑋 ) ) ) |
48 |
45 47
|
anbi12d |
⊢ ( 𝑧 = 𝑋 → ( ( ( 𝐶 +o 𝑋 ) = ( 𝐶 +o 𝑧 ) ∧ ( 𝐵 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑧 ) ) ↔ ( ( 𝐶 +o 𝑋 ) = ( 𝐶 +o 𝑋 ) ∧ ( 𝐵 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑋 ) ) ) ) |
49 |
48
|
rspcev |
⊢ ( ( 𝑋 ∈ 𝐷 ∧ ( ( 𝐶 +o 𝑋 ) = ( 𝐶 +o 𝑋 ) ∧ ( 𝐵 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑋 ) ) ) → ∃ 𝑧 ∈ 𝐷 ( ( 𝐶 +o 𝑋 ) = ( 𝐶 +o 𝑧 ) ∧ ( 𝐵 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑧 ) ) ) |
50 |
42 43 49
|
mpanr12 |
⊢ ( 𝑋 ∈ 𝐷 → ∃ 𝑧 ∈ 𝐷 ( ( 𝐶 +o 𝑋 ) = ( 𝐶 +o 𝑧 ) ∧ ( 𝐵 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑧 ) ) ) |
51 |
50
|
adantl |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐷 ) → ∃ 𝑧 ∈ 𝐷 ( ( 𝐶 +o 𝑋 ) = ( 𝐶 +o 𝑧 ) ∧ ( 𝐵 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑧 ) ) ) |
52 |
|
ovex |
⊢ ( 𝐶 +o 𝑋 ) ∈ V |
53 |
|
fvex |
⊢ ( 𝐵 ‘ 𝑋 ) ∈ V |
54 |
52 53
|
pm3.2i |
⊢ ( ( 𝐶 +o 𝑋 ) ∈ V ∧ ( 𝐵 ‘ 𝑋 ) ∈ V ) |
55 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝐶 +o 𝑋 ) → ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ↔ ( 𝐶 +o 𝑋 ) ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) ) |
56 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝐶 +o 𝑋 ) → ( 𝑥 = ( 𝐶 +o 𝑧 ) ↔ ( 𝐶 +o 𝑋 ) = ( 𝐶 +o 𝑧 ) ) ) |
57 |
56
|
anbi1d |
⊢ ( 𝑥 = ( 𝐶 +o 𝑋 ) → ( ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ↔ ( ( 𝐶 +o 𝑋 ) = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) ) |
58 |
57
|
rexbidv |
⊢ ( 𝑥 = ( 𝐶 +o 𝑋 ) → ( ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ↔ ∃ 𝑧 ∈ 𝐷 ( ( 𝐶 +o 𝑋 ) = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) ) |
59 |
55 58
|
anbi12d |
⊢ ( 𝑥 = ( 𝐶 +o 𝑋 ) → ( ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) ↔ ( ( 𝐶 +o 𝑋 ) ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( ( 𝐶 +o 𝑋 ) = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) ) ) |
60 |
|
eqeq1 |
⊢ ( 𝑦 = ( 𝐵 ‘ 𝑋 ) → ( 𝑦 = ( 𝐵 ‘ 𝑧 ) ↔ ( 𝐵 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑧 ) ) ) |
61 |
60
|
anbi2d |
⊢ ( 𝑦 = ( 𝐵 ‘ 𝑋 ) → ( ( ( 𝐶 +o 𝑋 ) = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ↔ ( ( 𝐶 +o 𝑋 ) = ( 𝐶 +o 𝑧 ) ∧ ( 𝐵 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑧 ) ) ) ) |
62 |
61
|
rexbidv |
⊢ ( 𝑦 = ( 𝐵 ‘ 𝑋 ) → ( ∃ 𝑧 ∈ 𝐷 ( ( 𝐶 +o 𝑋 ) = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ↔ ∃ 𝑧 ∈ 𝐷 ( ( 𝐶 +o 𝑋 ) = ( 𝐶 +o 𝑧 ) ∧ ( 𝐵 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑧 ) ) ) ) |
63 |
62
|
anbi2d |
⊢ ( 𝑦 = ( 𝐵 ‘ 𝑋 ) → ( ( ( 𝐶 +o 𝑋 ) ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( ( 𝐶 +o 𝑋 ) = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) ↔ ( ( 𝐶 +o 𝑋 ) ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( ( 𝐶 +o 𝑋 ) = ( 𝐶 +o 𝑧 ) ∧ ( 𝐵 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑧 ) ) ) ) ) |
64 |
59 63
|
opelopabg |
⊢ ( ( ( 𝐶 +o 𝑋 ) ∈ V ∧ ( 𝐵 ‘ 𝑋 ) ∈ V ) → ( 〈 ( 𝐶 +o 𝑋 ) , ( 𝐵 ‘ 𝑋 ) 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ↔ ( ( 𝐶 +o 𝑋 ) ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( ( 𝐶 +o 𝑋 ) = ( 𝐶 +o 𝑧 ) ∧ ( 𝐵 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑧 ) ) ) ) ) |
65 |
54 64
|
mp1i |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐷 ) → ( 〈 ( 𝐶 +o 𝑋 ) , ( 𝐵 ‘ 𝑋 ) 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ↔ ( ( 𝐶 +o 𝑋 ) ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( ( 𝐶 +o 𝑋 ) = ( 𝐶 +o 𝑧 ) ∧ ( 𝐵 ‘ 𝑋 ) = ( 𝐵 ‘ 𝑧 ) ) ) ) ) |
66 |
40 51 65
|
mpbir2and |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐷 ) → 〈 ( 𝐶 +o 𝑋 ) , ( 𝐵 ‘ 𝑋 ) 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ) |
67 |
|
fnopfvb |
⊢ ( ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } Fn ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ( 𝐶 +o 𝑋 ) ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → ( ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ‘ ( 𝐶 +o 𝑋 ) ) = ( 𝐵 ‘ 𝑋 ) ↔ 〈 ( 𝐶 +o 𝑋 ) , ( 𝐵 ‘ 𝑋 ) 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ) ) |
68 |
15 40 67
|
syl2anc |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐷 ) → ( ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ‘ ( 𝐶 +o 𝑋 ) ) = ( 𝐵 ‘ 𝑋 ) ↔ 〈 ( 𝐶 +o 𝑋 ) , ( 𝐵 ‘ 𝑋 ) 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ) ) |
69 |
66 68
|
mpbird |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐷 ) → ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ‘ ( 𝐶 +o 𝑋 ) ) = ( 𝐵 ‘ 𝑋 ) ) |
70 |
4 41 69
|
3eqtrd |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐷 ) → ( ( 𝐴 + 𝐵 ) ‘ ( 𝐶 +o 𝑋 ) ) = ( 𝐵 ‘ 𝑋 ) ) |