Step |
Hyp |
Ref |
Expression |
1 |
|
tfsconcat.op |
⊢ + = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑎 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( dom 𝑎 +o dom 𝑏 ) ∖ dom 𝑎 ) ∧ ∃ 𝑧 ∈ dom 𝑏 ( 𝑥 = ( dom 𝑎 +o 𝑧 ) ∧ 𝑦 = ( 𝑏 ‘ 𝑧 ) ) ) } ) ) |
2 |
1
|
tfsconcatfv1 |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝐴 + 𝐵 ) ‘ 𝑋 ) = ( 𝐴 ‘ 𝑋 ) ) |
3 |
2
|
adantlr |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝐴 + 𝐵 ) ‘ 𝑋 ) = ( 𝐴 ‘ 𝑋 ) ) |
4 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ∈ 𝐶 ) |
5 |
4
|
iftrued |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) ∧ 𝑋 ∈ 𝐶 ) → if ( 𝑋 ∈ 𝐶 , ( 𝐴 ‘ 𝑋 ) , ( 𝐵 ‘ ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ) ) = ( 𝐴 ‘ 𝑋 ) ) |
6 |
3 5
|
eqtr4d |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝐴 + 𝐵 ) ‘ 𝑋 ) = if ( 𝑋 ∈ 𝐶 , ( 𝐴 ‘ 𝑋 ) , ( 𝐵 ‘ ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ) ) ) |
7 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) ∧ ¬ 𝑋 ∈ 𝐶 ) → ¬ 𝑋 ∈ 𝐶 ) |
8 |
7
|
iffalsed |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) ∧ ¬ 𝑋 ∈ 𝐶 ) → if ( 𝑋 ∈ 𝐶 , ( 𝐴 ‘ 𝑋 ) , ( 𝐵 ‘ ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ) ) = ( 𝐵 ‘ ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ) ) |
9 |
|
simpll |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) ∧ ¬ 𝑋 ∈ 𝐶 ) → ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ) |
10 |
|
onss |
⊢ ( 𝐷 ∈ On → 𝐷 ⊆ On ) |
11 |
10
|
adantl |
⊢ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → 𝐷 ⊆ On ) |
12 |
11
|
ad3antlr |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) ∧ ¬ 𝑋 ∈ 𝐶 ) → 𝐷 ⊆ On ) |
13 |
|
simpllr |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) ∧ ¬ 𝑋 ∈ 𝐶 ) → ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) |
14 |
|
simplrl |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) → 𝐶 ∈ On ) |
15 |
|
oacl |
⊢ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → ( 𝐶 +o 𝐷 ) ∈ On ) |
16 |
15
|
adantl |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝐶 +o 𝐷 ) ∈ On ) |
17 |
|
onelon |
⊢ ( ( ( 𝐶 +o 𝐷 ) ∈ On ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) → 𝑋 ∈ On ) |
18 |
16 17
|
sylan |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) → 𝑋 ∈ On ) |
19 |
|
ontri1 |
⊢ ( ( 𝐶 ∈ On ∧ 𝑋 ∈ On ) → ( 𝐶 ⊆ 𝑋 ↔ ¬ 𝑋 ∈ 𝐶 ) ) |
20 |
14 18 19
|
syl2anc |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) → ( 𝐶 ⊆ 𝑋 ↔ ¬ 𝑋 ∈ 𝐶 ) ) |
21 |
20
|
biimpar |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) ∧ ¬ 𝑋 ∈ 𝐶 ) → 𝐶 ⊆ 𝑋 ) |
22 |
|
simplr |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) ∧ ¬ 𝑋 ∈ 𝐶 ) → 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) |
23 |
|
oawordex2 |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐶 ⊆ 𝑋 ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) ) → ∃ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) |
24 |
13 21 22 23
|
syl12anc |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) ∧ ¬ 𝑋 ∈ 𝐶 ) → ∃ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) |
25 |
14 18
|
jca |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) → ( 𝐶 ∈ On ∧ 𝑋 ∈ On ) ) |
26 |
|
oawordeu |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝑋 ∈ On ) ∧ 𝐶 ⊆ 𝑋 ) → ∃! 𝑑 ∈ On ( 𝐶 +o 𝑑 ) = 𝑋 ) |
27 |
25 21 26
|
syl2an2r |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) ∧ ¬ 𝑋 ∈ 𝐶 ) → ∃! 𝑑 ∈ On ( 𝐶 +o 𝑑 ) = 𝑋 ) |
28 |
|
reuss |
⊢ ( ( 𝐷 ⊆ On ∧ ∃ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ∧ ∃! 𝑑 ∈ On ( 𝐶 +o 𝑑 ) = 𝑋 ) → ∃! 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) |
29 |
12 24 27 28
|
syl3anc |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) ∧ ¬ 𝑋 ∈ 𝐶 ) → ∃! 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) |
30 |
|
riotacl |
⊢ ( ∃! 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 → ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ∈ 𝐷 ) |
31 |
29 30
|
syl |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) ∧ ¬ 𝑋 ∈ 𝐶 ) → ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ∈ 𝐷 ) |
32 |
1
|
tfsconcatfv2 |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ∈ 𝐷 ) → ( ( 𝐴 + 𝐵 ) ‘ ( 𝐶 +o ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ) ) = ( 𝐵 ‘ ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ) ) |
33 |
9 31 32
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) ∧ ¬ 𝑋 ∈ 𝐶 ) → ( ( 𝐴 + 𝐵 ) ‘ ( 𝐶 +o ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ) ) = ( 𝐵 ‘ ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ) ) |
34 |
|
riotasbc |
⊢ ( ∃! 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 → [ ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) / 𝑑 ] ( 𝐶 +o 𝑑 ) = 𝑋 ) |
35 |
29 34
|
syl |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) ∧ ¬ 𝑋 ∈ 𝐶 ) → [ ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) / 𝑑 ] ( 𝐶 +o 𝑑 ) = 𝑋 ) |
36 |
|
sbceq1g |
⊢ ( ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ∈ 𝐷 → ( [ ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) / 𝑑 ] ( 𝐶 +o 𝑑 ) = 𝑋 ↔ ⦋ ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) / 𝑑 ⦌ ( 𝐶 +o 𝑑 ) = 𝑋 ) ) |
37 |
|
csbov2g |
⊢ ( ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ∈ 𝐷 → ⦋ ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) / 𝑑 ⦌ ( 𝐶 +o 𝑑 ) = ( 𝐶 +o ⦋ ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) / 𝑑 ⦌ 𝑑 ) ) |
38 |
|
csbvarg |
⊢ ( ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ∈ 𝐷 → ⦋ ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) / 𝑑 ⦌ 𝑑 = ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ) |
39 |
38
|
oveq2d |
⊢ ( ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ∈ 𝐷 → ( 𝐶 +o ⦋ ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) / 𝑑 ⦌ 𝑑 ) = ( 𝐶 +o ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ) ) |
40 |
37 39
|
eqtrd |
⊢ ( ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ∈ 𝐷 → ⦋ ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) / 𝑑 ⦌ ( 𝐶 +o 𝑑 ) = ( 𝐶 +o ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ) ) |
41 |
40
|
eqeq1d |
⊢ ( ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ∈ 𝐷 → ( ⦋ ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) / 𝑑 ⦌ ( 𝐶 +o 𝑑 ) = 𝑋 ↔ ( 𝐶 +o ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ) = 𝑋 ) ) |
42 |
36 41
|
bitrd |
⊢ ( ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ∈ 𝐷 → ( [ ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) / 𝑑 ] ( 𝐶 +o 𝑑 ) = 𝑋 ↔ ( 𝐶 +o ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ) = 𝑋 ) ) |
43 |
42
|
biimpa |
⊢ ( ( ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ∈ 𝐷 ∧ [ ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) / 𝑑 ] ( 𝐶 +o 𝑑 ) = 𝑋 ) → ( 𝐶 +o ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ) = 𝑋 ) |
44 |
31 35 43
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) ∧ ¬ 𝑋 ∈ 𝐶 ) → ( 𝐶 +o ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ) = 𝑋 ) |
45 |
44
|
fveq2d |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) ∧ ¬ 𝑋 ∈ 𝐶 ) → ( ( 𝐴 + 𝐵 ) ‘ ( 𝐶 +o ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ) ) = ( ( 𝐴 + 𝐵 ) ‘ 𝑋 ) ) |
46 |
8 33 45
|
3eqtr2rd |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) ∧ ¬ 𝑋 ∈ 𝐶 ) → ( ( 𝐴 + 𝐵 ) ‘ 𝑋 ) = if ( 𝑋 ∈ 𝐶 , ( 𝐴 ‘ 𝑋 ) , ( 𝐵 ‘ ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ) ) ) |
47 |
6 46
|
pm2.61dan |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑋 ∈ ( 𝐶 +o 𝐷 ) ) → ( ( 𝐴 + 𝐵 ) ‘ 𝑋 ) = if ( 𝑋 ∈ 𝐶 , ( 𝐴 ‘ 𝑋 ) , ( 𝐵 ‘ ( ℩ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑋 ) ) ) ) |