Step |
Hyp |
Ref |
Expression |
1 |
|
tfsconcat.op |
|- .+ = ( a e. _V , b e. _V |-> ( a u. { <. x , y >. | ( x e. ( ( dom a +o dom b ) \ dom a ) /\ E. z e. dom b ( x = ( dom a +o z ) /\ y = ( b ` z ) ) ) } ) ) |
2 |
1
|
tfsconcatfv1 |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. C ) -> ( ( A .+ B ) ` X ) = ( A ` X ) ) |
3 |
2
|
adantlr |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. ( C +o D ) ) /\ X e. C ) -> ( ( A .+ B ) ` X ) = ( A ` X ) ) |
4 |
|
simpr |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. ( C +o D ) ) /\ X e. C ) -> X e. C ) |
5 |
4
|
iftrued |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. ( C +o D ) ) /\ X e. C ) -> if ( X e. C , ( A ` X ) , ( B ` ( iota_ d e. D ( C +o d ) = X ) ) ) = ( A ` X ) ) |
6 |
3 5
|
eqtr4d |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. ( C +o D ) ) /\ X e. C ) -> ( ( A .+ B ) ` X ) = if ( X e. C , ( A ` X ) , ( B ` ( iota_ d e. D ( C +o d ) = X ) ) ) ) |
7 |
|
simpr |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. ( C +o D ) ) /\ -. X e. C ) -> -. X e. C ) |
8 |
7
|
iffalsed |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. ( C +o D ) ) /\ -. X e. C ) -> if ( X e. C , ( A ` X ) , ( B ` ( iota_ d e. D ( C +o d ) = X ) ) ) = ( B ` ( iota_ d e. D ( C +o d ) = X ) ) ) |
9 |
|
simpll |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. ( C +o D ) ) /\ -. X e. C ) -> ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) ) |
10 |
|
onss |
|- ( D e. On -> D C_ On ) |
11 |
10
|
adantl |
|- ( ( C e. On /\ D e. On ) -> D C_ On ) |
12 |
11
|
ad3antlr |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. ( C +o D ) ) /\ -. X e. C ) -> D C_ On ) |
13 |
|
simpllr |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. ( C +o D ) ) /\ -. X e. C ) -> ( C e. On /\ D e. On ) ) |
14 |
|
simplrl |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. ( C +o D ) ) -> C e. On ) |
15 |
|
oacl |
|- ( ( C e. On /\ D e. On ) -> ( C +o D ) e. On ) |
16 |
15
|
adantl |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( C +o D ) e. On ) |
17 |
|
onelon |
|- ( ( ( C +o D ) e. On /\ X e. ( C +o D ) ) -> X e. On ) |
18 |
16 17
|
sylan |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. ( C +o D ) ) -> X e. On ) |
19 |
|
ontri1 |
|- ( ( C e. On /\ X e. On ) -> ( C C_ X <-> -. X e. C ) ) |
20 |
14 18 19
|
syl2anc |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. ( C +o D ) ) -> ( C C_ X <-> -. X e. C ) ) |
21 |
20
|
biimpar |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. ( C +o D ) ) /\ -. X e. C ) -> C C_ X ) |
22 |
|
simplr |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. ( C +o D ) ) /\ -. X e. C ) -> X e. ( C +o D ) ) |
23 |
|
oawordex2 |
|- ( ( ( C e. On /\ D e. On ) /\ ( C C_ X /\ X e. ( C +o D ) ) ) -> E. d e. D ( C +o d ) = X ) |
24 |
13 21 22 23
|
syl12anc |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. ( C +o D ) ) /\ -. X e. C ) -> E. d e. D ( C +o d ) = X ) |
25 |
14 18
|
jca |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. ( C +o D ) ) -> ( C e. On /\ X e. On ) ) |
26 |
|
oawordeu |
|- ( ( ( C e. On /\ X e. On ) /\ C C_ X ) -> E! d e. On ( C +o d ) = X ) |
27 |
25 21 26
|
syl2an2r |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. ( C +o D ) ) /\ -. X e. C ) -> E! d e. On ( C +o d ) = X ) |
28 |
|
reuss |
|- ( ( D C_ On /\ E. d e. D ( C +o d ) = X /\ E! d e. On ( C +o d ) = X ) -> E! d e. D ( C +o d ) = X ) |
29 |
12 24 27 28
|
syl3anc |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. ( C +o D ) ) /\ -. X e. C ) -> E! d e. D ( C +o d ) = X ) |
30 |
|
riotacl |
|- ( E! d e. D ( C +o d ) = X -> ( iota_ d e. D ( C +o d ) = X ) e. D ) |
31 |
29 30
|
syl |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. ( C +o D ) ) /\ -. X e. C ) -> ( iota_ d e. D ( C +o d ) = X ) e. D ) |
32 |
1
|
tfsconcatfv2 |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ ( iota_ d e. D ( C +o d ) = X ) e. D ) -> ( ( A .+ B ) ` ( C +o ( iota_ d e. D ( C +o d ) = X ) ) ) = ( B ` ( iota_ d e. D ( C +o d ) = X ) ) ) |
33 |
9 31 32
|
syl2anc |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. ( C +o D ) ) /\ -. X e. C ) -> ( ( A .+ B ) ` ( C +o ( iota_ d e. D ( C +o d ) = X ) ) ) = ( B ` ( iota_ d e. D ( C +o d ) = X ) ) ) |
34 |
|
riotasbc |
|- ( E! d e. D ( C +o d ) = X -> [. ( iota_ d e. D ( C +o d ) = X ) / d ]. ( C +o d ) = X ) |
35 |
29 34
|
syl |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. ( C +o D ) ) /\ -. X e. C ) -> [. ( iota_ d e. D ( C +o d ) = X ) / d ]. ( C +o d ) = X ) |
36 |
|
sbceq1g |
|- ( ( iota_ d e. D ( C +o d ) = X ) e. D -> ( [. ( iota_ d e. D ( C +o d ) = X ) / d ]. ( C +o d ) = X <-> [_ ( iota_ d e. D ( C +o d ) = X ) / d ]_ ( C +o d ) = X ) ) |
37 |
|
csbov2g |
|- ( ( iota_ d e. D ( C +o d ) = X ) e. D -> [_ ( iota_ d e. D ( C +o d ) = X ) / d ]_ ( C +o d ) = ( C +o [_ ( iota_ d e. D ( C +o d ) = X ) / d ]_ d ) ) |
38 |
|
csbvarg |
|- ( ( iota_ d e. D ( C +o d ) = X ) e. D -> [_ ( iota_ d e. D ( C +o d ) = X ) / d ]_ d = ( iota_ d e. D ( C +o d ) = X ) ) |
39 |
38
|
oveq2d |
|- ( ( iota_ d e. D ( C +o d ) = X ) e. D -> ( C +o [_ ( iota_ d e. D ( C +o d ) = X ) / d ]_ d ) = ( C +o ( iota_ d e. D ( C +o d ) = X ) ) ) |
40 |
37 39
|
eqtrd |
|- ( ( iota_ d e. D ( C +o d ) = X ) e. D -> [_ ( iota_ d e. D ( C +o d ) = X ) / d ]_ ( C +o d ) = ( C +o ( iota_ d e. D ( C +o d ) = X ) ) ) |
41 |
40
|
eqeq1d |
|- ( ( iota_ d e. D ( C +o d ) = X ) e. D -> ( [_ ( iota_ d e. D ( C +o d ) = X ) / d ]_ ( C +o d ) = X <-> ( C +o ( iota_ d e. D ( C +o d ) = X ) ) = X ) ) |
42 |
36 41
|
bitrd |
|- ( ( iota_ d e. D ( C +o d ) = X ) e. D -> ( [. ( iota_ d e. D ( C +o d ) = X ) / d ]. ( C +o d ) = X <-> ( C +o ( iota_ d e. D ( C +o d ) = X ) ) = X ) ) |
43 |
42
|
biimpa |
|- ( ( ( iota_ d e. D ( C +o d ) = X ) e. D /\ [. ( iota_ d e. D ( C +o d ) = X ) / d ]. ( C +o d ) = X ) -> ( C +o ( iota_ d e. D ( C +o d ) = X ) ) = X ) |
44 |
31 35 43
|
syl2anc |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. ( C +o D ) ) /\ -. X e. C ) -> ( C +o ( iota_ d e. D ( C +o d ) = X ) ) = X ) |
45 |
44
|
fveq2d |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. ( C +o D ) ) /\ -. X e. C ) -> ( ( A .+ B ) ` ( C +o ( iota_ d e. D ( C +o d ) = X ) ) ) = ( ( A .+ B ) ` X ) ) |
46 |
8 33 45
|
3eqtr2rd |
|- ( ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. ( C +o D ) ) /\ -. X e. C ) -> ( ( A .+ B ) ` X ) = if ( X e. C , ( A ` X ) , ( B ` ( iota_ d e. D ( C +o d ) = X ) ) ) ) |
47 |
6 46
|
pm2.61dan |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. ( C +o D ) ) -> ( ( A .+ B ) ` X ) = if ( X e. C , ( A ` X ) , ( B ` ( iota_ d e. D ( C +o d ) = X ) ) ) ) |