| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tfsconcat.op |
|- .+ = ( a e. _V , b e. _V |-> ( a u. { <. x , y >. | ( x e. ( ( dom a +o dom b ) \ dom a ) /\ E. z e. dom b ( x = ( dom a +o z ) /\ y = ( b ` z ) ) ) } ) ) |
| 2 |
1
|
tfsconcatun |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( A .+ B ) = ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) ) |
| 3 |
2
|
fveq1d |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( ( A .+ B ) ` ( C +o X ) ) = ( ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) ` ( C +o X ) ) ) |
| 4 |
3
|
adantr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. D ) -> ( ( A .+ B ) ` ( C +o X ) ) = ( ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) ` ( C +o X ) ) ) |
| 5 |
|
simplll |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. D ) -> A Fn C ) |
| 6 |
|
simplrl |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> C e. On ) |
| 7 |
|
simplrr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> D e. On ) |
| 8 |
|
simpr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> x e. ( ( C +o D ) \ C ) ) |
| 9 |
|
tfsconcatlem |
|- ( ( C e. On /\ D e. On /\ x e. ( ( C +o D ) \ C ) ) -> E! y E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) |
| 10 |
6 7 8 9
|
syl3anc |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ x e. ( ( C +o D ) \ C ) ) -> E! y E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) |
| 11 |
10
|
ralrimiva |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> A. x e. ( ( C +o D ) \ C ) E! y E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) |
| 12 |
|
eqid |
|- { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } = { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } |
| 13 |
12
|
fnopabg |
|- ( A. x e. ( ( C +o D ) \ C ) E! y E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) <-> { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } Fn ( ( C +o D ) \ C ) ) |
| 14 |
11 13
|
sylib |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } Fn ( ( C +o D ) \ C ) ) |
| 15 |
14
|
adantr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. D ) -> { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } Fn ( ( C +o D ) \ C ) ) |
| 16 |
|
disjdif |
|- ( C i^i ( ( C +o D ) \ C ) ) = (/) |
| 17 |
16
|
a1i |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. D ) -> ( C i^i ( ( C +o D ) \ C ) ) = (/) ) |
| 18 |
|
pm3.22 |
|- ( ( C e. On /\ D e. On ) -> ( D e. On /\ C e. On ) ) |
| 19 |
18
|
adantl |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( D e. On /\ C e. On ) ) |
| 20 |
|
oaordi |
|- ( ( D e. On /\ C e. On ) -> ( X e. D -> ( C +o X ) e. ( C +o D ) ) ) |
| 21 |
19 20
|
syl |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( X e. D -> ( C +o X ) e. ( C +o D ) ) ) |
| 22 |
21
|
imp |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. D ) -> ( C +o X ) e. ( C +o D ) ) |
| 23 |
|
simplrl |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. D ) -> C e. On ) |
| 24 |
|
simpr |
|- ( ( C e. On /\ D e. On ) -> D e. On ) |
| 25 |
24
|
adantl |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> D e. On ) |
| 26 |
|
onelon |
|- ( ( D e. On /\ X e. D ) -> X e. On ) |
| 27 |
25 26
|
sylan |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. D ) -> X e. On ) |
| 28 |
|
oaword1 |
|- ( ( C e. On /\ X e. On ) -> C C_ ( C +o X ) ) |
| 29 |
23 27 28
|
syl2anc |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. D ) -> C C_ ( C +o X ) ) |
| 30 |
|
oacl |
|- ( ( C e. On /\ D e. On ) -> ( C +o D ) e. On ) |
| 31 |
|
eloni |
|- ( ( C +o D ) e. On -> Ord ( C +o D ) ) |
| 32 |
30 31
|
syl |
|- ( ( C e. On /\ D e. On ) -> Ord ( C +o D ) ) |
| 33 |
|
eloni |
|- ( C e. On -> Ord C ) |
| 34 |
33
|
adantr |
|- ( ( C e. On /\ D e. On ) -> Ord C ) |
| 35 |
32 34
|
jca |
|- ( ( C e. On /\ D e. On ) -> ( Ord ( C +o D ) /\ Ord C ) ) |
| 36 |
35
|
adantl |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( Ord ( C +o D ) /\ Ord C ) ) |
| 37 |
36
|
adantr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. D ) -> ( Ord ( C +o D ) /\ Ord C ) ) |
| 38 |
|
ordeldif |
|- ( ( Ord ( C +o D ) /\ Ord C ) -> ( ( C +o X ) e. ( ( C +o D ) \ C ) <-> ( ( C +o X ) e. ( C +o D ) /\ C C_ ( C +o X ) ) ) ) |
| 39 |
37 38
|
syl |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. D ) -> ( ( C +o X ) e. ( ( C +o D ) \ C ) <-> ( ( C +o X ) e. ( C +o D ) /\ C C_ ( C +o X ) ) ) ) |
| 40 |
22 29 39
|
mpbir2and |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. D ) -> ( C +o X ) e. ( ( C +o D ) \ C ) ) |
| 41 |
5 15 17 40
|
fvun2d |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. D ) -> ( ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) ` ( C +o X ) ) = ( { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ` ( C +o X ) ) ) |
| 42 |
|
eqid |
|- ( C +o X ) = ( C +o X ) |
| 43 |
|
eqid |
|- ( B ` X ) = ( B ` X ) |
| 44 |
|
oveq2 |
|- ( z = X -> ( C +o z ) = ( C +o X ) ) |
| 45 |
44
|
eqeq2d |
|- ( z = X -> ( ( C +o X ) = ( C +o z ) <-> ( C +o X ) = ( C +o X ) ) ) |
| 46 |
|
fveq2 |
|- ( z = X -> ( B ` z ) = ( B ` X ) ) |
| 47 |
46
|
eqeq2d |
|- ( z = X -> ( ( B ` X ) = ( B ` z ) <-> ( B ` X ) = ( B ` X ) ) ) |
| 48 |
45 47
|
anbi12d |
|- ( z = X -> ( ( ( C +o X ) = ( C +o z ) /\ ( B ` X ) = ( B ` z ) ) <-> ( ( C +o X ) = ( C +o X ) /\ ( B ` X ) = ( B ` X ) ) ) ) |
| 49 |
48
|
rspcev |
|- ( ( X e. D /\ ( ( C +o X ) = ( C +o X ) /\ ( B ` X ) = ( B ` X ) ) ) -> E. z e. D ( ( C +o X ) = ( C +o z ) /\ ( B ` X ) = ( B ` z ) ) ) |
| 50 |
42 43 49
|
mpanr12 |
|- ( X e. D -> E. z e. D ( ( C +o X ) = ( C +o z ) /\ ( B ` X ) = ( B ` z ) ) ) |
| 51 |
50
|
adantl |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. D ) -> E. z e. D ( ( C +o X ) = ( C +o z ) /\ ( B ` X ) = ( B ` z ) ) ) |
| 52 |
|
ovex |
|- ( C +o X ) e. _V |
| 53 |
|
fvex |
|- ( B ` X ) e. _V |
| 54 |
52 53
|
pm3.2i |
|- ( ( C +o X ) e. _V /\ ( B ` X ) e. _V ) |
| 55 |
|
eleq1 |
|- ( x = ( C +o X ) -> ( x e. ( ( C +o D ) \ C ) <-> ( C +o X ) e. ( ( C +o D ) \ C ) ) ) |
| 56 |
|
eqeq1 |
|- ( x = ( C +o X ) -> ( x = ( C +o z ) <-> ( C +o X ) = ( C +o z ) ) ) |
| 57 |
56
|
anbi1d |
|- ( x = ( C +o X ) -> ( ( x = ( C +o z ) /\ y = ( B ` z ) ) <-> ( ( C +o X ) = ( C +o z ) /\ y = ( B ` z ) ) ) ) |
| 58 |
57
|
rexbidv |
|- ( x = ( C +o X ) -> ( E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) <-> E. z e. D ( ( C +o X ) = ( C +o z ) /\ y = ( B ` z ) ) ) ) |
| 59 |
55 58
|
anbi12d |
|- ( x = ( C +o X ) -> ( ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) <-> ( ( C +o X ) e. ( ( C +o D ) \ C ) /\ E. z e. D ( ( C +o X ) = ( C +o z ) /\ y = ( B ` z ) ) ) ) ) |
| 60 |
|
eqeq1 |
|- ( y = ( B ` X ) -> ( y = ( B ` z ) <-> ( B ` X ) = ( B ` z ) ) ) |
| 61 |
60
|
anbi2d |
|- ( y = ( B ` X ) -> ( ( ( C +o X ) = ( C +o z ) /\ y = ( B ` z ) ) <-> ( ( C +o X ) = ( C +o z ) /\ ( B ` X ) = ( B ` z ) ) ) ) |
| 62 |
61
|
rexbidv |
|- ( y = ( B ` X ) -> ( E. z e. D ( ( C +o X ) = ( C +o z ) /\ y = ( B ` z ) ) <-> E. z e. D ( ( C +o X ) = ( C +o z ) /\ ( B ` X ) = ( B ` z ) ) ) ) |
| 63 |
62
|
anbi2d |
|- ( y = ( B ` X ) -> ( ( ( C +o X ) e. ( ( C +o D ) \ C ) /\ E. z e. D ( ( C +o X ) = ( C +o z ) /\ y = ( B ` z ) ) ) <-> ( ( C +o X ) e. ( ( C +o D ) \ C ) /\ E. z e. D ( ( C +o X ) = ( C +o z ) /\ ( B ` X ) = ( B ` z ) ) ) ) ) |
| 64 |
59 63
|
opelopabg |
|- ( ( ( C +o X ) e. _V /\ ( B ` X ) e. _V ) -> ( <. ( C +o X ) , ( B ` X ) >. e. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } <-> ( ( C +o X ) e. ( ( C +o D ) \ C ) /\ E. z e. D ( ( C +o X ) = ( C +o z ) /\ ( B ` X ) = ( B ` z ) ) ) ) ) |
| 65 |
54 64
|
mp1i |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. D ) -> ( <. ( C +o X ) , ( B ` X ) >. e. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } <-> ( ( C +o X ) e. ( ( C +o D ) \ C ) /\ E. z e. D ( ( C +o X ) = ( C +o z ) /\ ( B ` X ) = ( B ` z ) ) ) ) ) |
| 66 |
40 51 65
|
mpbir2and |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. D ) -> <. ( C +o X ) , ( B ` X ) >. e. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) |
| 67 |
|
fnopfvb |
|- ( ( { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } Fn ( ( C +o D ) \ C ) /\ ( C +o X ) e. ( ( C +o D ) \ C ) ) -> ( ( { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ` ( C +o X ) ) = ( B ` X ) <-> <. ( C +o X ) , ( B ` X ) >. e. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) ) |
| 68 |
15 40 67
|
syl2anc |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. D ) -> ( ( { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ` ( C +o X ) ) = ( B ` X ) <-> <. ( C +o X ) , ( B ` X ) >. e. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) ) |
| 69 |
66 68
|
mpbird |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. D ) -> ( { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ` ( C +o X ) ) = ( B ` X ) ) |
| 70 |
4 41 69
|
3eqtrd |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ X e. D ) -> ( ( A .+ B ) ` ( C +o X ) ) = ( B ` X ) ) |