Step |
Hyp |
Ref |
Expression |
1 |
|
tfsconcat.op |
|
2 |
1
|
tfsconcatun |
|
3 |
2
|
fveq1d |
|
4 |
3
|
adantr |
|
5 |
|
simplll |
|
6 |
|
simplrl |
|
7 |
|
simplrr |
|
8 |
|
simpr |
|
9 |
|
tfsconcatlem |
|
10 |
6 7 8 9
|
syl3anc |
|
11 |
10
|
ralrimiva |
|
12 |
|
eqid |
|
13 |
12
|
fnopabg |
|
14 |
11 13
|
sylib |
|
15 |
14
|
adantr |
|
16 |
|
disjdif |
|
17 |
16
|
a1i |
|
18 |
|
pm3.22 |
|
19 |
18
|
adantl |
|
20 |
|
oaordi |
|
21 |
19 20
|
syl |
|
22 |
21
|
imp |
|
23 |
|
simplrl |
|
24 |
|
simpr |
|
25 |
24
|
adantl |
|
26 |
|
onelon |
|
27 |
25 26
|
sylan |
|
28 |
|
oaword1 |
|
29 |
23 27 28
|
syl2anc |
|
30 |
|
oacl |
|
31 |
|
eloni |
|
32 |
30 31
|
syl |
|
33 |
|
eloni |
|
34 |
33
|
adantr |
|
35 |
32 34
|
jca |
|
36 |
35
|
adantl |
|
37 |
36
|
adantr |
|
38 |
|
ordeldif |
|
39 |
37 38
|
syl |
|
40 |
22 29 39
|
mpbir2and |
|
41 |
5 15 17 40
|
fvun2d |
|
42 |
|
eqid |
|
43 |
|
eqid |
|
44 |
|
oveq2 |
|
45 |
44
|
eqeq2d |
|
46 |
|
fveq2 |
|
47 |
46
|
eqeq2d |
|
48 |
45 47
|
anbi12d |
|
49 |
48
|
rspcev |
|
50 |
42 43 49
|
mpanr12 |
|
51 |
50
|
adantl |
|
52 |
|
ovex |
|
53 |
|
fvex |
|
54 |
52 53
|
pm3.2i |
|
55 |
|
eleq1 |
|
56 |
|
eqeq1 |
|
57 |
56
|
anbi1d |
|
58 |
57
|
rexbidv |
|
59 |
55 58
|
anbi12d |
|
60 |
|
eqeq1 |
|
61 |
60
|
anbi2d |
|
62 |
61
|
rexbidv |
|
63 |
62
|
anbi2d |
|
64 |
59 63
|
opelopabg |
|
65 |
54 64
|
mp1i |
|
66 |
40 51 65
|
mpbir2and |
|
67 |
|
fnopfvb |
|
68 |
15 40 67
|
syl2anc |
|
69 |
66 68
|
mpbird |
|
70 |
4 41 69
|
3eqtrd |
|