Metamath Proof Explorer


Theorem tfsconcatfv2

Description: A latter value of the concatenation of two transfinite series. (Contributed by RP, 23-Feb-2025)

Ref Expression
Hypothesis tfsconcat.op + ˙ = a V , b V a x y | x dom a + 𝑜 dom b dom a z dom b x = dom a + 𝑜 z y = b z
Assertion tfsconcatfv2 A Fn C B Fn D C On D On X D A + ˙ B C + 𝑜 X = B X

Proof

Step Hyp Ref Expression
1 tfsconcat.op + ˙ = a V , b V a x y | x dom a + 𝑜 dom b dom a z dom b x = dom a + 𝑜 z y = b z
2 1 tfsconcatun A Fn C B Fn D C On D On A + ˙ B = A x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z
3 2 fveq1d A Fn C B Fn D C On D On A + ˙ B C + 𝑜 X = A x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z C + 𝑜 X
4 3 adantr A Fn C B Fn D C On D On X D A + ˙ B C + 𝑜 X = A x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z C + 𝑜 X
5 simplll A Fn C B Fn D C On D On X D A Fn C
6 simplrl A Fn C B Fn D C On D On x C + 𝑜 D C C On
7 simplrr A Fn C B Fn D C On D On x C + 𝑜 D C D On
8 simpr A Fn C B Fn D C On D On x C + 𝑜 D C x C + 𝑜 D C
9 tfsconcatlem C On D On x C + 𝑜 D C ∃! y z D x = C + 𝑜 z y = B z
10 6 7 8 9 syl3anc A Fn C B Fn D C On D On x C + 𝑜 D C ∃! y z D x = C + 𝑜 z y = B z
11 10 ralrimiva A Fn C B Fn D C On D On x C + 𝑜 D C ∃! y z D x = C + 𝑜 z y = B z
12 eqid x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z = x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z
13 12 fnopabg x C + 𝑜 D C ∃! y z D x = C + 𝑜 z y = B z x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z Fn C + 𝑜 D C
14 11 13 sylib A Fn C B Fn D C On D On x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z Fn C + 𝑜 D C
15 14 adantr A Fn C B Fn D C On D On X D x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z Fn C + 𝑜 D C
16 disjdif C C + 𝑜 D C =
17 16 a1i A Fn C B Fn D C On D On X D C C + 𝑜 D C =
18 pm3.22 C On D On D On C On
19 18 adantl A Fn C B Fn D C On D On D On C On
20 oaordi D On C On X D C + 𝑜 X C + 𝑜 D
21 19 20 syl A Fn C B Fn D C On D On X D C + 𝑜 X C + 𝑜 D
22 21 imp A Fn C B Fn D C On D On X D C + 𝑜 X C + 𝑜 D
23 simplrl A Fn C B Fn D C On D On X D C On
24 simpr C On D On D On
25 24 adantl A Fn C B Fn D C On D On D On
26 onelon D On X D X On
27 25 26 sylan A Fn C B Fn D C On D On X D X On
28 oaword1 C On X On C C + 𝑜 X
29 23 27 28 syl2anc A Fn C B Fn D C On D On X D C C + 𝑜 X
30 oacl C On D On C + 𝑜 D On
31 eloni C + 𝑜 D On Ord C + 𝑜 D
32 30 31 syl C On D On Ord C + 𝑜 D
33 eloni C On Ord C
34 33 adantr C On D On Ord C
35 32 34 jca C On D On Ord C + 𝑜 D Ord C
36 35 adantl A Fn C B Fn D C On D On Ord C + 𝑜 D Ord C
37 36 adantr A Fn C B Fn D C On D On X D Ord C + 𝑜 D Ord C
38 ordeldif Ord C + 𝑜 D Ord C C + 𝑜 X C + 𝑜 D C C + 𝑜 X C + 𝑜 D C C + 𝑜 X
39 37 38 syl A Fn C B Fn D C On D On X D C + 𝑜 X C + 𝑜 D C C + 𝑜 X C + 𝑜 D C C + 𝑜 X
40 22 29 39 mpbir2and A Fn C B Fn D C On D On X D C + 𝑜 X C + 𝑜 D C
41 5 15 17 40 fvun2d A Fn C B Fn D C On D On X D A x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z C + 𝑜 X = x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z C + 𝑜 X
42 eqid C + 𝑜 X = C + 𝑜 X
43 eqid B X = B X
44 oveq2 z = X C + 𝑜 z = C + 𝑜 X
45 44 eqeq2d z = X C + 𝑜 X = C + 𝑜 z C + 𝑜 X = C + 𝑜 X
46 fveq2 z = X B z = B X
47 46 eqeq2d z = X B X = B z B X = B X
48 45 47 anbi12d z = X C + 𝑜 X = C + 𝑜 z B X = B z C + 𝑜 X = C + 𝑜 X B X = B X
49 48 rspcev X D C + 𝑜 X = C + 𝑜 X B X = B X z D C + 𝑜 X = C + 𝑜 z B X = B z
50 42 43 49 mpanr12 X D z D C + 𝑜 X = C + 𝑜 z B X = B z
51 50 adantl A Fn C B Fn D C On D On X D z D C + 𝑜 X = C + 𝑜 z B X = B z
52 ovex C + 𝑜 X V
53 fvex B X V
54 52 53 pm3.2i C + 𝑜 X V B X V
55 eleq1 x = C + 𝑜 X x C + 𝑜 D C C + 𝑜 X C + 𝑜 D C
56 eqeq1 x = C + 𝑜 X x = C + 𝑜 z C + 𝑜 X = C + 𝑜 z
57 56 anbi1d x = C + 𝑜 X x = C + 𝑜 z y = B z C + 𝑜 X = C + 𝑜 z y = B z
58 57 rexbidv x = C + 𝑜 X z D x = C + 𝑜 z y = B z z D C + 𝑜 X = C + 𝑜 z y = B z
59 55 58 anbi12d x = C + 𝑜 X x C + 𝑜 D C z D x = C + 𝑜 z y = B z C + 𝑜 X C + 𝑜 D C z D C + 𝑜 X = C + 𝑜 z y = B z
60 eqeq1 y = B X y = B z B X = B z
61 60 anbi2d y = B X C + 𝑜 X = C + 𝑜 z y = B z C + 𝑜 X = C + 𝑜 z B X = B z
62 61 rexbidv y = B X z D C + 𝑜 X = C + 𝑜 z y = B z z D C + 𝑜 X = C + 𝑜 z B X = B z
63 62 anbi2d y = B X C + 𝑜 X C + 𝑜 D C z D C + 𝑜 X = C + 𝑜 z y = B z C + 𝑜 X C + 𝑜 D C z D C + 𝑜 X = C + 𝑜 z B X = B z
64 59 63 opelopabg C + 𝑜 X V B X V C + 𝑜 X B X x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z C + 𝑜 X C + 𝑜 D C z D C + 𝑜 X = C + 𝑜 z B X = B z
65 54 64 mp1i A Fn C B Fn D C On D On X D C + 𝑜 X B X x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z C + 𝑜 X C + 𝑜 D C z D C + 𝑜 X = C + 𝑜 z B X = B z
66 40 51 65 mpbir2and A Fn C B Fn D C On D On X D C + 𝑜 X B X x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z
67 fnopfvb x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z Fn C + 𝑜 D C C + 𝑜 X C + 𝑜 D C x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z C + 𝑜 X = B X C + 𝑜 X B X x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z
68 15 40 67 syl2anc A Fn C B Fn D C On D On X D x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z C + 𝑜 X = B X C + 𝑜 X B X x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z
69 66 68 mpbird A Fn C B Fn D C On D On X D x y | x C + 𝑜 D C z D x = C + 𝑜 z y = B z C + 𝑜 X = B X
70 4 41 69 3eqtrd A Fn C B Fn D C On D On X D A + ˙ B C + 𝑜 X = B X