| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tfsconcat.op |
|
| 2 |
1
|
tfsconcatun |
|
| 3 |
2
|
fveq1d |
|
| 4 |
3
|
adantr |
|
| 5 |
|
simplll |
|
| 6 |
|
simplrl |
|
| 7 |
|
simplrr |
|
| 8 |
|
simpr |
|
| 9 |
|
tfsconcatlem |
|
| 10 |
6 7 8 9
|
syl3anc |
|
| 11 |
10
|
ralrimiva |
|
| 12 |
|
eqid |
|
| 13 |
12
|
fnopabg |
|
| 14 |
11 13
|
sylib |
|
| 15 |
14
|
adantr |
|
| 16 |
|
disjdif |
|
| 17 |
16
|
a1i |
|
| 18 |
|
pm3.22 |
|
| 19 |
18
|
adantl |
|
| 20 |
|
oaordi |
|
| 21 |
19 20
|
syl |
|
| 22 |
21
|
imp |
|
| 23 |
|
simplrl |
|
| 24 |
|
simpr |
|
| 25 |
24
|
adantl |
|
| 26 |
|
onelon |
|
| 27 |
25 26
|
sylan |
|
| 28 |
|
oaword1 |
|
| 29 |
23 27 28
|
syl2anc |
|
| 30 |
|
oacl |
|
| 31 |
|
eloni |
|
| 32 |
30 31
|
syl |
|
| 33 |
|
eloni |
|
| 34 |
33
|
adantr |
|
| 35 |
32 34
|
jca |
|
| 36 |
35
|
adantl |
|
| 37 |
36
|
adantr |
|
| 38 |
|
ordeldif |
|
| 39 |
37 38
|
syl |
|
| 40 |
22 29 39
|
mpbir2and |
|
| 41 |
5 15 17 40
|
fvun2d |
|
| 42 |
|
eqid |
|
| 43 |
|
eqid |
|
| 44 |
|
oveq2 |
|
| 45 |
44
|
eqeq2d |
|
| 46 |
|
fveq2 |
|
| 47 |
46
|
eqeq2d |
|
| 48 |
45 47
|
anbi12d |
|
| 49 |
48
|
rspcev |
|
| 50 |
42 43 49
|
mpanr12 |
|
| 51 |
50
|
adantl |
|
| 52 |
|
ovex |
|
| 53 |
|
fvex |
|
| 54 |
52 53
|
pm3.2i |
|
| 55 |
|
eleq1 |
|
| 56 |
|
eqeq1 |
|
| 57 |
56
|
anbi1d |
|
| 58 |
57
|
rexbidv |
|
| 59 |
55 58
|
anbi12d |
|
| 60 |
|
eqeq1 |
|
| 61 |
60
|
anbi2d |
|
| 62 |
61
|
rexbidv |
|
| 63 |
62
|
anbi2d |
|
| 64 |
59 63
|
opelopabg |
|
| 65 |
54 64
|
mp1i |
|
| 66 |
40 51 65
|
mpbir2and |
|
| 67 |
|
fnopfvb |
|
| 68 |
15 40 67
|
syl2anc |
|
| 69 |
66 68
|
mpbird |
|
| 70 |
4 41 69
|
3eqtrd |
|