| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tfsconcat.op |
⊢ + = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑎 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( dom 𝑎 +o dom 𝑏 ) ∖ dom 𝑎 ) ∧ ∃ 𝑧 ∈ dom 𝑏 ( 𝑥 = ( dom 𝑎 +o 𝑧 ) ∧ 𝑦 = ( 𝑏 ‘ 𝑧 ) ) ) } ) ) |
| 2 |
1
|
tfsconcatun |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝐴 + 𝐵 ) = ( 𝐴 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ) ) |
| 3 |
2
|
rneqd |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ran ( 𝐴 + 𝐵 ) = ran ( 𝐴 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ) ) |
| 4 |
|
rnun |
⊢ ran ( 𝐴 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ) = ( ran 𝐴 ∪ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ) |
| 5 |
4
|
a1i |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ran ( 𝐴 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ) = ( ran 𝐴 ∪ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ) ) |
| 6 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) ) |
| 7 |
|
pm3.22 |
⊢ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → ( 𝐷 ∈ On ∧ 𝐶 ∈ On ) ) |
| 8 |
7
|
adantl |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝐷 ∈ On ∧ 𝐶 ∈ On ) ) |
| 9 |
|
oaordi |
⊢ ( ( 𝐷 ∈ On ∧ 𝐶 ∈ On ) → ( 𝑑 ∈ 𝐷 → ( 𝐶 +o 𝑑 ) ∈ ( 𝐶 +o 𝐷 ) ) ) |
| 10 |
8 9
|
syl |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝑑 ∈ 𝐷 → ( 𝐶 +o 𝑑 ) ∈ ( 𝐶 +o 𝐷 ) ) ) |
| 11 |
10
|
imp |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ) → ( 𝐶 +o 𝑑 ) ∈ ( 𝐶 +o 𝐷 ) ) |
| 12 |
|
simplrl |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ) → 𝐶 ∈ On ) |
| 13 |
|
simprr |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → 𝐷 ∈ On ) |
| 14 |
|
onelon |
⊢ ( ( 𝐷 ∈ On ∧ 𝑑 ∈ 𝐷 ) → 𝑑 ∈ On ) |
| 15 |
13 14
|
sylan |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ) → 𝑑 ∈ On ) |
| 16 |
|
oaword1 |
⊢ ( ( 𝐶 ∈ On ∧ 𝑑 ∈ On ) → 𝐶 ⊆ ( 𝐶 +o 𝑑 ) ) |
| 17 |
12 15 16
|
syl2anc |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ) → 𝐶 ⊆ ( 𝐶 +o 𝑑 ) ) |
| 18 |
|
oacl |
⊢ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → ( 𝐶 +o 𝐷 ) ∈ On ) |
| 19 |
18
|
ad2antlr |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ) → ( 𝐶 +o 𝐷 ) ∈ On ) |
| 20 |
|
eloni |
⊢ ( ( 𝐶 +o 𝐷 ) ∈ On → Ord ( 𝐶 +o 𝐷 ) ) |
| 21 |
19 20
|
syl |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ) → Ord ( 𝐶 +o 𝐷 ) ) |
| 22 |
|
eloni |
⊢ ( 𝐶 ∈ On → Ord 𝐶 ) |
| 23 |
12 22
|
syl |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ) → Ord 𝐶 ) |
| 24 |
|
ordeldif |
⊢ ( ( Ord ( 𝐶 +o 𝐷 ) ∧ Ord 𝐶 ) → ( ( 𝐶 +o 𝑑 ) ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ↔ ( ( 𝐶 +o 𝑑 ) ∈ ( 𝐶 +o 𝐷 ) ∧ 𝐶 ⊆ ( 𝐶 +o 𝑑 ) ) ) ) |
| 25 |
21 23 24
|
syl2anc |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ) → ( ( 𝐶 +o 𝑑 ) ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ↔ ( ( 𝐶 +o 𝑑 ) ∈ ( 𝐶 +o 𝐷 ) ∧ 𝐶 ⊆ ( 𝐶 +o 𝑑 ) ) ) ) |
| 26 |
11 17 25
|
mpbir2and |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ) → ( 𝐶 +o 𝑑 ) ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) |
| 27 |
|
simpr |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) |
| 28 |
27
|
adantr |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) |
| 29 |
18 20
|
syl |
⊢ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → Ord ( 𝐶 +o 𝐷 ) ) |
| 30 |
22
|
adantr |
⊢ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → Ord 𝐶 ) |
| 31 |
29 30
|
jca |
⊢ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → ( Ord ( 𝐶 +o 𝐷 ) ∧ Ord 𝐶 ) ) |
| 32 |
31
|
adantl |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( Ord ( 𝐶 +o 𝐷 ) ∧ Ord 𝐶 ) ) |
| 33 |
|
ordeldif |
⊢ ( ( Ord ( 𝐶 +o 𝐷 ) ∧ Ord 𝐶 ) → ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ↔ ( 𝑥 ∈ ( 𝐶 +o 𝐷 ) ∧ 𝐶 ⊆ 𝑥 ) ) ) |
| 34 |
32 33
|
syl |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ↔ ( 𝑥 ∈ ( 𝐶 +o 𝐷 ) ∧ 𝐶 ⊆ 𝑥 ) ) ) |
| 35 |
34
|
biimpa |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → ( 𝑥 ∈ ( 𝐶 +o 𝐷 ) ∧ 𝐶 ⊆ 𝑥 ) ) |
| 36 |
35
|
ancomd |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → ( 𝐶 ⊆ 𝑥 ∧ 𝑥 ∈ ( 𝐶 +o 𝐷 ) ) ) |
| 37 |
|
oawordex2 |
⊢ ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ∧ ( 𝐶 ⊆ 𝑥 ∧ 𝑥 ∈ ( 𝐶 +o 𝐷 ) ) ) → ∃ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑥 ) |
| 38 |
28 36 37
|
syl2anc |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → ∃ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑥 ) |
| 39 |
|
eqcom |
⊢ ( ( 𝐶 +o 𝑑 ) = 𝑥 ↔ 𝑥 = ( 𝐶 +o 𝑑 ) ) |
| 40 |
39
|
rexbii |
⊢ ( ∃ 𝑑 ∈ 𝐷 ( 𝐶 +o 𝑑 ) = 𝑥 ↔ ∃ 𝑑 ∈ 𝐷 𝑥 = ( 𝐶 +o 𝑑 ) ) |
| 41 |
38 40
|
sylib |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → ∃ 𝑑 ∈ 𝐷 𝑥 = ( 𝐶 +o 𝑑 ) ) |
| 42 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑥 = ( 𝐶 +o 𝑧 ) ) → 𝑥 = ( 𝐶 +o 𝑧 ) ) |
| 43 |
|
simpll3 |
⊢ ( ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑥 = ( 𝐶 +o 𝑧 ) ) → 𝑥 = ( 𝐶 +o 𝑑 ) ) |
| 44 |
42 43
|
eqtr3d |
⊢ ( ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑥 = ( 𝐶 +o 𝑧 ) ) → ( 𝐶 +o 𝑧 ) = ( 𝐶 +o 𝑑 ) ) |
| 45 |
|
simp1rl |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) → 𝐶 ∈ On ) |
| 46 |
45
|
adantr |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) ∧ 𝑧 ∈ 𝐷 ) → 𝐶 ∈ On ) |
| 47 |
|
simp1rr |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) → 𝐷 ∈ On ) |
| 48 |
|
onelon |
⊢ ( ( 𝐷 ∈ On ∧ 𝑧 ∈ 𝐷 ) → 𝑧 ∈ On ) |
| 49 |
47 48
|
sylan |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) ∧ 𝑧 ∈ 𝐷 ) → 𝑧 ∈ On ) |
| 50 |
|
simp2 |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) → 𝑑 ∈ 𝐷 ) |
| 51 |
47 50 14
|
syl2anc |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) → 𝑑 ∈ On ) |
| 52 |
51
|
adantr |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) ∧ 𝑧 ∈ 𝐷 ) → 𝑑 ∈ On ) |
| 53 |
46 49 52
|
3jca |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) ∧ 𝑧 ∈ 𝐷 ) → ( 𝐶 ∈ On ∧ 𝑧 ∈ On ∧ 𝑑 ∈ On ) ) |
| 54 |
53
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑥 = ( 𝐶 +o 𝑧 ) ) → ( 𝐶 ∈ On ∧ 𝑧 ∈ On ∧ 𝑑 ∈ On ) ) |
| 55 |
|
oacan |
⊢ ( ( 𝐶 ∈ On ∧ 𝑧 ∈ On ∧ 𝑑 ∈ On ) → ( ( 𝐶 +o 𝑧 ) = ( 𝐶 +o 𝑑 ) ↔ 𝑧 = 𝑑 ) ) |
| 56 |
54 55
|
syl |
⊢ ( ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑥 = ( 𝐶 +o 𝑧 ) ) → ( ( 𝐶 +o 𝑧 ) = ( 𝐶 +o 𝑑 ) ↔ 𝑧 = 𝑑 ) ) |
| 57 |
44 56
|
mpbid |
⊢ ( ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑥 = ( 𝐶 +o 𝑧 ) ) → 𝑧 = 𝑑 ) |
| 58 |
|
velsn |
⊢ ( 𝑧 ∈ { 𝑑 } ↔ 𝑧 = 𝑑 ) |
| 59 |
57 58
|
sylibr |
⊢ ( ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑥 = ( 𝐶 +o 𝑧 ) ) → 𝑧 ∈ { 𝑑 } ) |
| 60 |
59
|
ex |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) ∧ 𝑧 ∈ 𝐷 ) → ( 𝑥 = ( 𝐶 +o 𝑧 ) → 𝑧 ∈ { 𝑑 } ) ) |
| 61 |
60
|
adantrd |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) ∧ 𝑧 ∈ 𝐷 ) → ( ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) → 𝑧 ∈ { 𝑑 } ) ) |
| 62 |
61
|
expimpd |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) → ( ( 𝑧 ∈ 𝐷 ∧ ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) → 𝑧 ∈ { 𝑑 } ) ) |
| 63 |
|
simprr |
⊢ ( ( 𝑧 ∈ 𝐷 ∧ ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) → 𝑦 = ( 𝐵 ‘ 𝑧 ) ) |
| 64 |
62 63
|
jca2 |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) → ( ( 𝑧 ∈ 𝐷 ∧ ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) → ( 𝑧 ∈ { 𝑑 } ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) ) |
| 65 |
64
|
reximdv2 |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) → ( ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) → ∃ 𝑧 ∈ { 𝑑 } 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) |
| 66 |
|
vex |
⊢ 𝑑 ∈ V |
| 67 |
|
fveq2 |
⊢ ( 𝑧 = 𝑑 → ( 𝐵 ‘ 𝑧 ) = ( 𝐵 ‘ 𝑑 ) ) |
| 68 |
67
|
eqeq2d |
⊢ ( 𝑧 = 𝑑 → ( 𝑦 = ( 𝐵 ‘ 𝑧 ) ↔ 𝑦 = ( 𝐵 ‘ 𝑑 ) ) ) |
| 69 |
66 68
|
rexsn |
⊢ ( ∃ 𝑧 ∈ { 𝑑 } 𝑦 = ( 𝐵 ‘ 𝑧 ) ↔ 𝑦 = ( 𝐵 ‘ 𝑑 ) ) |
| 70 |
65 69
|
imbitrdi |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) → ( ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) → 𝑦 = ( 𝐵 ‘ 𝑑 ) ) ) |
| 71 |
50
|
adantr |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) ∧ 𝑦 = ( 𝐵 ‘ 𝑑 ) ) → 𝑑 ∈ 𝐷 ) |
| 72 |
|
simpl3 |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) ∧ 𝑦 = ( 𝐵 ‘ 𝑑 ) ) → 𝑥 = ( 𝐶 +o 𝑑 ) ) |
| 73 |
|
simpr |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) ∧ 𝑦 = ( 𝐵 ‘ 𝑑 ) ) → 𝑦 = ( 𝐵 ‘ 𝑑 ) ) |
| 74 |
|
oveq2 |
⊢ ( 𝑧 = 𝑑 → ( 𝐶 +o 𝑧 ) = ( 𝐶 +o 𝑑 ) ) |
| 75 |
74
|
eqeq2d |
⊢ ( 𝑧 = 𝑑 → ( 𝑥 = ( 𝐶 +o 𝑧 ) ↔ 𝑥 = ( 𝐶 +o 𝑑 ) ) ) |
| 76 |
75 68
|
anbi12d |
⊢ ( 𝑧 = 𝑑 → ( ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ↔ ( 𝑥 = ( 𝐶 +o 𝑑 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑑 ) ) ) ) |
| 77 |
76
|
rspcev |
⊢ ( ( 𝑑 ∈ 𝐷 ∧ ( 𝑥 = ( 𝐶 +o 𝑑 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑑 ) ) ) → ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) |
| 78 |
71 72 73 77
|
syl12anc |
⊢ ( ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) ∧ 𝑦 = ( 𝐵 ‘ 𝑑 ) ) → ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) |
| 79 |
78
|
ex |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) → ( 𝑦 = ( 𝐵 ‘ 𝑑 ) → ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) ) |
| 80 |
70 79
|
impbid |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑑 ∈ 𝐷 ∧ 𝑥 = ( 𝐶 +o 𝑑 ) ) → ( ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ↔ 𝑦 = ( 𝐵 ‘ 𝑑 ) ) ) |
| 81 |
26 41 80
|
rexxfrd2 |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( ∃ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ↔ ∃ 𝑑 ∈ 𝐷 𝑦 = ( 𝐵 ‘ 𝑑 ) ) ) |
| 82 |
6 81
|
bitr3id |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( ∃ 𝑥 ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) ↔ ∃ 𝑑 ∈ 𝐷 𝑦 = ( 𝐵 ‘ 𝑑 ) ) ) |
| 83 |
82
|
abbidv |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } = { 𝑦 ∣ ∃ 𝑑 ∈ 𝐷 𝑦 = ( 𝐵 ‘ 𝑑 ) } ) |
| 84 |
|
rnopab |
⊢ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } |
| 85 |
84
|
a1i |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } = { 𝑦 ∣ ∃ 𝑥 ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ) |
| 86 |
|
fnrnfv |
⊢ ( 𝐵 Fn 𝐷 → ran 𝐵 = { 𝑦 ∣ ∃ 𝑑 ∈ 𝐷 𝑦 = ( 𝐵 ‘ 𝑑 ) } ) |
| 87 |
86
|
ad2antlr |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ran 𝐵 = { 𝑦 ∣ ∃ 𝑑 ∈ 𝐷 𝑦 = ( 𝐵 ‘ 𝑑 ) } ) |
| 88 |
83 85 87
|
3eqtr4d |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } = ran 𝐵 ) |
| 89 |
88
|
uneq2d |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( ran 𝐴 ∪ ran { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ) = ( ran 𝐴 ∪ ran 𝐵 ) ) |
| 90 |
3 5 89
|
3eqtrd |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ran ( 𝐴 + 𝐵 ) = ( ran 𝐴 ∪ ran 𝐵 ) ) |