Step |
Hyp |
Ref |
Expression |
1 |
|
tfsconcat.op |
|
2 |
1
|
tfsconcatun |
|
3 |
2
|
rneqd |
|
4 |
|
rnun |
|
5 |
4
|
a1i |
|
6 |
|
df-rex |
|
7 |
|
pm3.22 |
|
8 |
7
|
adantl |
|
9 |
|
oaordi |
|
10 |
8 9
|
syl |
|
11 |
10
|
imp |
|
12 |
|
simplrl |
|
13 |
|
simprr |
|
14 |
|
onelon |
|
15 |
13 14
|
sylan |
|
16 |
|
oaword1 |
|
17 |
12 15 16
|
syl2anc |
|
18 |
|
oacl |
|
19 |
18
|
ad2antlr |
|
20 |
|
eloni |
|
21 |
19 20
|
syl |
|
22 |
|
eloni |
|
23 |
12 22
|
syl |
|
24 |
|
ordeldif |
|
25 |
21 23 24
|
syl2anc |
|
26 |
11 17 25
|
mpbir2and |
|
27 |
|
simpr |
|
28 |
27
|
adantr |
|
29 |
18 20
|
syl |
|
30 |
22
|
adantr |
|
31 |
29 30
|
jca |
|
32 |
31
|
adantl |
|
33 |
|
ordeldif |
|
34 |
32 33
|
syl |
|
35 |
34
|
biimpa |
|
36 |
35
|
ancomd |
|
37 |
|
oawordex2 |
|
38 |
28 36 37
|
syl2anc |
|
39 |
|
eqcom |
|
40 |
39
|
rexbii |
|
41 |
38 40
|
sylib |
|
42 |
|
simpr |
|
43 |
|
simpll3 |
|
44 |
42 43
|
eqtr3d |
|
45 |
|
simp1rl |
|
46 |
45
|
adantr |
|
47 |
|
simp1rr |
|
48 |
|
onelon |
|
49 |
47 48
|
sylan |
|
50 |
|
simp2 |
|
51 |
47 50 14
|
syl2anc |
|
52 |
51
|
adantr |
|
53 |
46 49 52
|
3jca |
|
54 |
53
|
adantr |
|
55 |
|
oacan |
|
56 |
54 55
|
syl |
|
57 |
44 56
|
mpbid |
|
58 |
|
velsn |
|
59 |
57 58
|
sylibr |
|
60 |
59
|
ex |
|
61 |
60
|
adantrd |
|
62 |
61
|
expimpd |
|
63 |
|
simprr |
|
64 |
62 63
|
jca2 |
|
65 |
64
|
reximdv2 |
|
66 |
|
vex |
|
67 |
|
fveq2 |
|
68 |
67
|
eqeq2d |
|
69 |
66 68
|
rexsn |
|
70 |
65 69
|
imbitrdi |
|
71 |
50
|
adantr |
|
72 |
|
simpl3 |
|
73 |
|
simpr |
|
74 |
|
oveq2 |
|
75 |
74
|
eqeq2d |
|
76 |
75 68
|
anbi12d |
|
77 |
76
|
rspcev |
|
78 |
71 72 73 77
|
syl12anc |
|
79 |
78
|
ex |
|
80 |
70 79
|
impbid |
|
81 |
26 41 80
|
rexxfrd2 |
|
82 |
6 81
|
bitr3id |
|
83 |
82
|
abbidv |
|
84 |
|
rnopab |
|
85 |
84
|
a1i |
|
86 |
|
fnrnfv |
|
87 |
86
|
ad2antlr |
|
88 |
83 85 87
|
3eqtr4d |
|
89 |
88
|
uneq2d |
|
90 |
3 5 89
|
3eqtrd |
|