Metamath Proof Explorer


Theorem rnopab

Description: The range of a class of ordered pairs. (Contributed by NM, 14-Aug-1995) (Revised by Mario Carneiro, 4-Dec-2016)

Ref Expression
Assertion rnopab ranxy|φ=y|xφ

Proof

Step Hyp Ref Expression
1 nfopab1 _xxy|φ
2 nfopab2 _yxy|φ
3 1 2 dfrnf ranxy|φ=y|xxxy|φy
4 df-br xxy|φyxyxy|φ
5 opabidw xyxy|φφ
6 4 5 bitri xxy|φyφ
7 6 exbii xxxy|φyxφ
8 7 abbii y|xxxy|φy=y|xφ
9 3 8 eqtri ranxy|φ=y|xφ