Metamath Proof Explorer


Theorem nfopab2

Description: The second abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995) (Revised by Mario Carneiro, 14-Oct-2016)

Ref Expression
Assertion nfopab2 _yxy|φ

Proof

Step Hyp Ref Expression
1 df-opab xy|φ=z|xyz=xyφ
2 nfe1 yyz=xyφ
3 2 nfex yxyz=xyφ
4 3 nfab _yz|xyz=xyφ
5 1 4 nfcxfr _yxy|φ