Metamath Proof Explorer


Theorem nfopab2

Description: The second abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995) (Revised by Mario Carneiro, 14-Oct-2016)

Ref Expression
Assertion nfopab2
|- F/_ y { <. x , y >. | ph }

Proof

Step Hyp Ref Expression
1 df-opab
 |-  { <. x , y >. | ph } = { z | E. x E. y ( z = <. x , y >. /\ ph ) }
2 nfe1
 |-  F/ y E. y ( z = <. x , y >. /\ ph )
3 2 nfex
 |-  F/ y E. x E. y ( z = <. x , y >. /\ ph )
4 3 nfab
 |-  F/_ y { z | E. x E. y ( z = <. x , y >. /\ ph ) }
5 1 4 nfcxfr
 |-  F/_ y { <. x , y >. | ph }