Metamath Proof Explorer


Theorem tfsconcatfn

Description: The concatenation of two transfinite series is a transfinite series. (Contributed by RP, 22-Feb-2025)

Ref Expression
Hypothesis tfsconcat.op + = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑎 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ( dom 𝑎 +o dom 𝑏 ) ∖ dom 𝑎 ) ∧ ∃ 𝑧 ∈ dom 𝑏 ( 𝑥 = ( dom 𝑎 +o 𝑧 ) ∧ 𝑦 = ( 𝑏𝑧 ) ) ) } ) )
Assertion tfsconcatfn ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝐴 + 𝐵 ) Fn ( 𝐶 +o 𝐷 ) )

Proof

Step Hyp Ref Expression
1 tfsconcat.op + = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑎 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ( dom 𝑎 +o dom 𝑏 ) ∖ dom 𝑎 ) ∧ ∃ 𝑧 ∈ dom 𝑏 ( 𝑥 = ( dom 𝑎 +o 𝑧 ) ∧ 𝑦 = ( 𝑏𝑧 ) ) ) } ) )
2 simpll ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → 𝐴 Fn 𝐶 )
3 simplrl ( ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → 𝐶 ∈ On )
4 simplrr ( ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → 𝐷 ∈ On )
5 simpr ( ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) )
6 tfsconcatlem ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ∧ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → ∃! 𝑦𝑧𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵𝑧 ) ) )
7 3 4 5 6 syl3anc ( ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → ∃! 𝑦𝑧𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵𝑧 ) ) )
8 7 ralrimiva ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ∀ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∃! 𝑦𝑧𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵𝑧 ) ) )
9 eqid { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵𝑧 ) ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵𝑧 ) ) ) }
10 9 fnopabg ( ∀ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∃! 𝑦𝑧𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵𝑧 ) ) ↔ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵𝑧 ) ) ) } Fn ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) )
11 8 10 sylib ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵𝑧 ) ) ) } Fn ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) )
12 disjdif ( 𝐶 ∩ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) = ∅
13 12 a1i ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝐶 ∩ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) = ∅ )
14 2 11 13 fnund ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝐴 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵𝑧 ) ) ) } ) Fn ( 𝐶 ∪ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) )
15 1 tfsconcatun ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝐴 + 𝐵 ) = ( 𝐴 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵𝑧 ) ) ) } ) )
16 oaword1 ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → 𝐶 ⊆ ( 𝐶 +o 𝐷 ) )
17 undif ( 𝐶 ⊆ ( 𝐶 +o 𝐷 ) ↔ ( 𝐶 ∪ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) = ( 𝐶 +o 𝐷 ) )
18 16 17 sylib ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → ( 𝐶 ∪ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) = ( 𝐶 +o 𝐷 ) )
19 18 eqcomd ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → ( 𝐶 +o 𝐷 ) = ( 𝐶 ∪ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) )
20 19 adantl ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝐶 +o 𝐷 ) = ( 𝐶 ∪ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) )
21 15 20 fneq12d ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 + 𝐵 ) Fn ( 𝐶 +o 𝐷 ) ↔ ( 𝐴 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵𝑧 ) ) ) } ) Fn ( 𝐶 ∪ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) ) )
22 14 21 mpbird ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝐴 + 𝐵 ) Fn ( 𝐶 +o 𝐷 ) )