Step |
Hyp |
Ref |
Expression |
1 |
|
tfsconcat.op |
⊢ + = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑎 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( dom 𝑎 +o dom 𝑏 ) ∖ dom 𝑎 ) ∧ ∃ 𝑧 ∈ dom 𝑏 ( 𝑥 = ( dom 𝑎 +o 𝑧 ) ∧ 𝑦 = ( 𝑏 ‘ 𝑧 ) ) ) } ) ) |
2 |
|
simpll |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → 𝐴 Fn 𝐶 ) |
3 |
|
simplrl |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → 𝐶 ∈ On ) |
4 |
|
simplrr |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → 𝐷 ∈ On ) |
5 |
|
simpr |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) |
6 |
|
tfsconcatlem |
⊢ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ∧ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → ∃! 𝑦 ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) |
7 |
3 4 5 6
|
syl3anc |
⊢ ( ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) ∧ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) → ∃! 𝑦 ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) |
8 |
7
|
ralrimiva |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ∀ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∃! 𝑦 ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) |
9 |
|
eqid |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } |
10 |
9
|
fnopabg |
⊢ ( ∀ 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∃! 𝑦 ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ↔ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } Fn ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) |
11 |
8 10
|
sylib |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } Fn ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) |
12 |
|
disjdif |
⊢ ( 𝐶 ∩ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) = ∅ |
13 |
12
|
a1i |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝐶 ∩ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) = ∅ ) |
14 |
2 11 13
|
fnund |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝐴 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ) Fn ( 𝐶 ∪ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) ) |
15 |
1
|
tfsconcatun |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝐴 + 𝐵 ) = ( 𝐴 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ) ) |
16 |
|
oaword1 |
⊢ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → 𝐶 ⊆ ( 𝐶 +o 𝐷 ) ) |
17 |
|
undif |
⊢ ( 𝐶 ⊆ ( 𝐶 +o 𝐷 ) ↔ ( 𝐶 ∪ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) = ( 𝐶 +o 𝐷 ) ) |
18 |
16 17
|
sylib |
⊢ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → ( 𝐶 ∪ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) = ( 𝐶 +o 𝐷 ) ) |
19 |
18
|
eqcomd |
⊢ ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → ( 𝐶 +o 𝐷 ) = ( 𝐶 ∪ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) ) |
20 |
19
|
adantl |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝐶 +o 𝐷 ) = ( 𝐶 ∪ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) ) |
21 |
15 20
|
fneq12d |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( ( 𝐴 + 𝐵 ) Fn ( 𝐶 +o 𝐷 ) ↔ ( 𝐴 ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ∧ ∃ 𝑧 ∈ 𝐷 ( 𝑥 = ( 𝐶 +o 𝑧 ) ∧ 𝑦 = ( 𝐵 ‘ 𝑧 ) ) ) } ) Fn ( 𝐶 ∪ ( ( 𝐶 +o 𝐷 ) ∖ 𝐶 ) ) ) ) |
22 |
14 21
|
mpbird |
⊢ ( ( ( 𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝐴 + 𝐵 ) Fn ( 𝐶 +o 𝐷 ) ) |