Step |
Hyp |
Ref |
Expression |
1 |
|
tfsconcat.op |
|- .+ = ( a e. _V , b e. _V |-> ( a u. { <. x , y >. | ( x e. ( ( dom a +o dom b ) \ dom a ) /\ E. z e. dom b ( x = ( dom a +o z ) /\ y = ( b ` z ) ) ) } ) ) |
2 |
|
fnrel |
|- ( B Fn D -> Rel B ) |
3 |
|
reldm0 |
|- ( Rel B -> ( B = (/) <-> dom B = (/) ) ) |
4 |
2 3
|
syl |
|- ( B Fn D -> ( B = (/) <-> dom B = (/) ) ) |
5 |
|
fndm |
|- ( B Fn D -> dom B = D ) |
6 |
5
|
eqeq1d |
|- ( B Fn D -> ( dom B = (/) <-> D = (/) ) ) |
7 |
4 6
|
bitrd |
|- ( B Fn D -> ( B = (/) <-> D = (/) ) ) |
8 |
7
|
ad2antlr |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( B = (/) <-> D = (/) ) ) |
9 |
|
rex0 |
|- -. E. z e. (/) ( x = ( C +o z ) /\ y = ( B ` z ) ) |
10 |
|
rexeq |
|- ( D = (/) -> ( E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) <-> E. z e. (/) ( x = ( C +o z ) /\ y = ( B ` z ) ) ) ) |
11 |
10
|
adantl |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ D = (/) ) -> ( E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) <-> E. z e. (/) ( x = ( C +o z ) /\ y = ( B ` z ) ) ) ) |
12 |
9 11
|
mtbiri |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ D = (/) ) -> -. E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) |
13 |
12
|
intnand |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ D = (/) ) -> -. ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) ) |
14 |
13
|
alrimivv |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ D = (/) ) -> A. x A. y -. ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) ) |
15 |
|
opab0 |
|- ( { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } = (/) <-> A. x A. y -. ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) ) |
16 |
14 15
|
sylibr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ D = (/) ) -> { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } = (/) ) |
17 |
|
0ss |
|- (/) C_ A |
18 |
16 17
|
eqsstrdi |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ D = (/) ) -> { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } C_ A ) |
19 |
18
|
ex |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( D = (/) -> { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } C_ A ) ) |
20 |
|
df-1o |
|- 1o = suc (/) |
21 |
|
simpl |
|- ( ( D e. On /\ -. D = (/) ) -> D e. On ) |
22 |
|
on0eln0 |
|- ( D e. On -> ( (/) e. D <-> D =/= (/) ) ) |
23 |
|
df-ne |
|- ( D =/= (/) <-> -. D = (/) ) |
24 |
22 23
|
bitrdi |
|- ( D e. On -> ( (/) e. D <-> -. D = (/) ) ) |
25 |
24
|
biimpar |
|- ( ( D e. On /\ -. D = (/) ) -> (/) e. D ) |
26 |
|
onsucss |
|- ( D e. On -> ( (/) e. D -> suc (/) C_ D ) ) |
27 |
21 25 26
|
sylc |
|- ( ( D e. On /\ -. D = (/) ) -> suc (/) C_ D ) |
28 |
20 27
|
eqsstrid |
|- ( ( D e. On /\ -. D = (/) ) -> 1o C_ D ) |
29 |
28
|
ex |
|- ( D e. On -> ( -. D = (/) -> 1o C_ D ) ) |
30 |
29
|
adantl |
|- ( ( C e. On /\ D e. On ) -> ( -. D = (/) -> 1o C_ D ) ) |
31 |
30
|
adantl |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( -. D = (/) -> 1o C_ D ) ) |
32 |
|
simpr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ 1o C_ D ) -> 1o C_ D ) |
33 |
|
0lt1o |
|- (/) e. 1o |
34 |
33
|
a1i |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ 1o C_ D ) -> (/) e. 1o ) |
35 |
32 34
|
sseldd |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ 1o C_ D ) -> (/) e. D ) |
36 |
|
oaord1 |
|- ( ( C e. On /\ D e. On ) -> ( (/) e. D <-> C e. ( C +o D ) ) ) |
37 |
36
|
ad2antlr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ 1o C_ D ) -> ( (/) e. D <-> C e. ( C +o D ) ) ) |
38 |
35 37
|
mpbid |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ 1o C_ D ) -> C e. ( C +o D ) ) |
39 |
|
ssidd |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ 1o C_ D ) -> C C_ C ) |
40 |
|
oacl |
|- ( ( C e. On /\ D e. On ) -> ( C +o D ) e. On ) |
41 |
|
eloni |
|- ( ( C +o D ) e. On -> Ord ( C +o D ) ) |
42 |
40 41
|
syl |
|- ( ( C e. On /\ D e. On ) -> Ord ( C +o D ) ) |
43 |
|
eloni |
|- ( C e. On -> Ord C ) |
44 |
43
|
adantr |
|- ( ( C e. On /\ D e. On ) -> Ord C ) |
45 |
42 44
|
jca |
|- ( ( C e. On /\ D e. On ) -> ( Ord ( C +o D ) /\ Ord C ) ) |
46 |
45
|
ad2antlr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ 1o C_ D ) -> ( Ord ( C +o D ) /\ Ord C ) ) |
47 |
|
ordeldif |
|- ( ( Ord ( C +o D ) /\ Ord C ) -> ( C e. ( ( C +o D ) \ C ) <-> ( C e. ( C +o D ) /\ C C_ C ) ) ) |
48 |
46 47
|
syl |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ 1o C_ D ) -> ( C e. ( ( C +o D ) \ C ) <-> ( C e. ( C +o D ) /\ C C_ C ) ) ) |
49 |
38 39 48
|
mpbir2and |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ 1o C_ D ) -> C e. ( ( C +o D ) \ C ) ) |
50 |
|
simpl |
|- ( ( C e. On /\ D e. On ) -> C e. On ) |
51 |
50
|
ad2antlr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ 1o C_ D ) -> C e. On ) |
52 |
|
oa0 |
|- ( C e. On -> ( C +o (/) ) = C ) |
53 |
51 52
|
syl |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ 1o C_ D ) -> ( C +o (/) ) = C ) |
54 |
53
|
eqcomd |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ 1o C_ D ) -> C = ( C +o (/) ) ) |
55 |
|
eqidd |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ 1o C_ D ) -> ( B ` (/) ) = ( B ` (/) ) ) |
56 |
54 55
|
jca |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ 1o C_ D ) -> ( C = ( C +o (/) ) /\ ( B ` (/) ) = ( B ` (/) ) ) ) |
57 |
|
oveq2 |
|- ( z = (/) -> ( C +o z ) = ( C +o (/) ) ) |
58 |
57
|
eqeq2d |
|- ( z = (/) -> ( C = ( C +o z ) <-> C = ( C +o (/) ) ) ) |
59 |
|
fveq2 |
|- ( z = (/) -> ( B ` z ) = ( B ` (/) ) ) |
60 |
59
|
eqeq2d |
|- ( z = (/) -> ( ( B ` (/) ) = ( B ` z ) <-> ( B ` (/) ) = ( B ` (/) ) ) ) |
61 |
58 60
|
anbi12d |
|- ( z = (/) -> ( ( C = ( C +o z ) /\ ( B ` (/) ) = ( B ` z ) ) <-> ( C = ( C +o (/) ) /\ ( B ` (/) ) = ( B ` (/) ) ) ) ) |
62 |
61
|
rspcev |
|- ( ( (/) e. D /\ ( C = ( C +o (/) ) /\ ( B ` (/) ) = ( B ` (/) ) ) ) -> E. z e. D ( C = ( C +o z ) /\ ( B ` (/) ) = ( B ` z ) ) ) |
63 |
35 56 62
|
syl2anc |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ 1o C_ D ) -> E. z e. D ( C = ( C +o z ) /\ ( B ` (/) ) = ( B ` z ) ) ) |
64 |
|
fvexd |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ 1o C_ D ) -> ( B ` (/) ) e. _V ) |
65 |
|
eleq1 |
|- ( x = C -> ( x e. ( ( C +o D ) \ C ) <-> C e. ( ( C +o D ) \ C ) ) ) |
66 |
65
|
adantr |
|- ( ( x = C /\ y = ( B ` (/) ) ) -> ( x e. ( ( C +o D ) \ C ) <-> C e. ( ( C +o D ) \ C ) ) ) |
67 |
|
eqeq1 |
|- ( x = C -> ( x = ( C +o z ) <-> C = ( C +o z ) ) ) |
68 |
|
eqeq1 |
|- ( y = ( B ` (/) ) -> ( y = ( B ` z ) <-> ( B ` (/) ) = ( B ` z ) ) ) |
69 |
67 68
|
bi2anan9 |
|- ( ( x = C /\ y = ( B ` (/) ) ) -> ( ( x = ( C +o z ) /\ y = ( B ` z ) ) <-> ( C = ( C +o z ) /\ ( B ` (/) ) = ( B ` z ) ) ) ) |
70 |
69
|
rexbidv |
|- ( ( x = C /\ y = ( B ` (/) ) ) -> ( E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) <-> E. z e. D ( C = ( C +o z ) /\ ( B ` (/) ) = ( B ` z ) ) ) ) |
71 |
66 70
|
anbi12d |
|- ( ( x = C /\ y = ( B ` (/) ) ) -> ( ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) <-> ( C e. ( ( C +o D ) \ C ) /\ E. z e. D ( C = ( C +o z ) /\ ( B ` (/) ) = ( B ` z ) ) ) ) ) |
72 |
71
|
opelopabga |
|- ( ( C e. On /\ ( B ` (/) ) e. _V ) -> ( <. C , ( B ` (/) ) >. e. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } <-> ( C e. ( ( C +o D ) \ C ) /\ E. z e. D ( C = ( C +o z ) /\ ( B ` (/) ) = ( B ` z ) ) ) ) ) |
73 |
51 64 72
|
syl2anc |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ 1o C_ D ) -> ( <. C , ( B ` (/) ) >. e. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } <-> ( C e. ( ( C +o D ) \ C ) /\ E. z e. D ( C = ( C +o z ) /\ ( B ` (/) ) = ( B ` z ) ) ) ) ) |
74 |
49 63 73
|
mpbir2and |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ 1o C_ D ) -> <. C , ( B ` (/) ) >. e. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) |
75 |
74
|
ex |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( 1o C_ D -> <. C , ( B ` (/) ) >. e. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) ) |
76 |
|
ordirr |
|- ( Ord C -> -. C e. C ) |
77 |
43 76
|
syl |
|- ( C e. On -> -. C e. C ) |
78 |
77
|
adantr |
|- ( ( C e. On /\ D e. On ) -> -. C e. C ) |
79 |
78
|
adantl |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> -. C e. C ) |
80 |
|
fndm |
|- ( A Fn C -> dom A = C ) |
81 |
80
|
adantr |
|- ( ( A Fn C /\ B Fn D ) -> dom A = C ) |
82 |
81
|
adantr |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> dom A = C ) |
83 |
79 82
|
neleqtrrd |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> -. C e. dom A ) |
84 |
50
|
adantl |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> C e. On ) |
85 |
|
fvexd |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( B ` (/) ) e. _V ) |
86 |
84 85
|
opeldmd |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( <. C , ( B ` (/) ) >. e. A -> C e. dom A ) ) |
87 |
83 86
|
mtod |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> -. <. C , ( B ` (/) ) >. e. A ) |
88 |
75 87
|
jctird |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( 1o C_ D -> ( <. C , ( B ` (/) ) >. e. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } /\ -. <. C , ( B ` (/) ) >. e. A ) ) ) |
89 |
|
nelss |
|- ( ( <. C , ( B ` (/) ) >. e. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } /\ -. <. C , ( B ` (/) ) >. e. A ) -> -. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } C_ A ) |
90 |
88 89
|
syl6 |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( 1o C_ D -> -. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } C_ A ) ) |
91 |
31 90
|
syld |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( -. D = (/) -> -. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } C_ A ) ) |
92 |
19 91
|
impcon4bid |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( D = (/) <-> { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } C_ A ) ) |
93 |
8 92
|
bitrd |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( B = (/) <-> { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } C_ A ) ) |
94 |
|
ssequn2 |
|- ( { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } C_ A <-> ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) = A ) |
95 |
93 94
|
bitrdi |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( B = (/) <-> ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) = A ) ) |
96 |
1
|
tfsconcatun |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( A .+ B ) = ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) ) |
97 |
96
|
eqeq1d |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( ( A .+ B ) = A <-> ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) = A ) ) |
98 |
95 97
|
bitr4d |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( B = (/) <-> ( A .+ B ) = A ) ) |