Step |
Hyp |
Ref |
Expression |
1 |
|
tfsconcat.op |
|- .+ = ( a e. _V , b e. _V |-> ( a u. { <. x , y >. | ( x e. ( ( dom a +o dom b ) \ dom a ) /\ E. z e. dom b ( x = ( dom a +o z ) /\ y = ( b ` z ) ) ) } ) ) |
2 |
|
simpr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ A = (/) ) -> A = (/) ) |
3 |
|
fnrel |
|- ( A Fn C -> Rel A ) |
4 |
|
reldm0 |
|- ( Rel A -> ( A = (/) <-> dom A = (/) ) ) |
5 |
3 4
|
syl |
|- ( A Fn C -> ( A = (/) <-> dom A = (/) ) ) |
6 |
|
fndm |
|- ( A Fn C -> dom A = C ) |
7 |
6
|
eqeq1d |
|- ( A Fn C -> ( dom A = (/) <-> C = (/) ) ) |
8 |
5 7
|
bitrd |
|- ( A Fn C -> ( A = (/) <-> C = (/) ) ) |
9 |
8
|
ad2antrr |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( A = (/) <-> C = (/) ) ) |
10 |
|
simpr |
|- ( ( A Fn C /\ B Fn D ) -> B Fn D ) |
11 |
|
simpr |
|- ( ( C e. On /\ D e. On ) -> D e. On ) |
12 |
10 11
|
anim12i |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( B Fn D /\ D e. On ) ) |
13 |
12
|
anim1i |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ C = (/) ) -> ( ( B Fn D /\ D e. On ) /\ C = (/) ) ) |
14 |
9 13
|
sylbida |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ A = (/) ) -> ( ( B Fn D /\ D e. On ) /\ C = (/) ) ) |
15 |
|
oveq1 |
|- ( C = (/) -> ( C +o D ) = ( (/) +o D ) ) |
16 |
|
id |
|- ( C = (/) -> C = (/) ) |
17 |
15 16
|
difeq12d |
|- ( C = (/) -> ( ( C +o D ) \ C ) = ( ( (/) +o D ) \ (/) ) ) |
18 |
|
dif0 |
|- ( ( (/) +o D ) \ (/) ) = ( (/) +o D ) |
19 |
17 18
|
eqtrdi |
|- ( C = (/) -> ( ( C +o D ) \ C ) = ( (/) +o D ) ) |
20 |
19
|
eleq2d |
|- ( C = (/) -> ( x e. ( ( C +o D ) \ C ) <-> x e. ( (/) +o D ) ) ) |
21 |
|
oveq1 |
|- ( C = (/) -> ( C +o z ) = ( (/) +o z ) ) |
22 |
21
|
eqeq2d |
|- ( C = (/) -> ( x = ( C +o z ) <-> x = ( (/) +o z ) ) ) |
23 |
22
|
anbi1d |
|- ( C = (/) -> ( ( x = ( C +o z ) /\ y = ( B ` z ) ) <-> ( x = ( (/) +o z ) /\ y = ( B ` z ) ) ) ) |
24 |
23
|
rexbidv |
|- ( C = (/) -> ( E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) <-> E. z e. D ( x = ( (/) +o z ) /\ y = ( B ` z ) ) ) ) |
25 |
20 24
|
anbi12d |
|- ( C = (/) -> ( ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) <-> ( x e. ( (/) +o D ) /\ E. z e. D ( x = ( (/) +o z ) /\ y = ( B ` z ) ) ) ) ) |
26 |
|
oa0r |
|- ( D e. On -> ( (/) +o D ) = D ) |
27 |
26
|
eleq2d |
|- ( D e. On -> ( x e. ( (/) +o D ) <-> x e. D ) ) |
28 |
|
onelon |
|- ( ( D e. On /\ z e. D ) -> z e. On ) |
29 |
|
oa0r |
|- ( z e. On -> ( (/) +o z ) = z ) |
30 |
29
|
eqeq2d |
|- ( z e. On -> ( x = ( (/) +o z ) <-> x = z ) ) |
31 |
30
|
anbi1d |
|- ( z e. On -> ( ( x = ( (/) +o z ) /\ y = ( B ` z ) ) <-> ( x = z /\ y = ( B ` z ) ) ) ) |
32 |
28 31
|
syl |
|- ( ( D e. On /\ z e. D ) -> ( ( x = ( (/) +o z ) /\ y = ( B ` z ) ) <-> ( x = z /\ y = ( B ` z ) ) ) ) |
33 |
32
|
rexbidva |
|- ( D e. On -> ( E. z e. D ( x = ( (/) +o z ) /\ y = ( B ` z ) ) <-> E. z e. D ( x = z /\ y = ( B ` z ) ) ) ) |
34 |
27 33
|
anbi12d |
|- ( D e. On -> ( ( x e. ( (/) +o D ) /\ E. z e. D ( x = ( (/) +o z ) /\ y = ( B ` z ) ) ) <-> ( x e. D /\ E. z e. D ( x = z /\ y = ( B ` z ) ) ) ) ) |
35 |
|
df-rex |
|- ( E. z e. D ( x = z /\ y = ( B ` z ) ) <-> E. z ( z e. D /\ ( x = z /\ y = ( B ` z ) ) ) ) |
36 |
|
an12 |
|- ( ( z e. D /\ ( x = z /\ y = ( B ` z ) ) ) <-> ( x = z /\ ( z e. D /\ y = ( B ` z ) ) ) ) |
37 |
|
eqcom |
|- ( x = z <-> z = x ) |
38 |
37
|
anbi1i |
|- ( ( x = z /\ ( z e. D /\ y = ( B ` z ) ) ) <-> ( z = x /\ ( z e. D /\ y = ( B ` z ) ) ) ) |
39 |
36 38
|
bitri |
|- ( ( z e. D /\ ( x = z /\ y = ( B ` z ) ) ) <-> ( z = x /\ ( z e. D /\ y = ( B ` z ) ) ) ) |
40 |
39
|
exbii |
|- ( E. z ( z e. D /\ ( x = z /\ y = ( B ` z ) ) ) <-> E. z ( z = x /\ ( z e. D /\ y = ( B ` z ) ) ) ) |
41 |
|
eleq1w |
|- ( z = x -> ( z e. D <-> x e. D ) ) |
42 |
|
fveq2 |
|- ( z = x -> ( B ` z ) = ( B ` x ) ) |
43 |
42
|
eqeq2d |
|- ( z = x -> ( y = ( B ` z ) <-> y = ( B ` x ) ) ) |
44 |
41 43
|
anbi12d |
|- ( z = x -> ( ( z e. D /\ y = ( B ` z ) ) <-> ( x e. D /\ y = ( B ` x ) ) ) ) |
45 |
44
|
equsexvw |
|- ( E. z ( z = x /\ ( z e. D /\ y = ( B ` z ) ) ) <-> ( x e. D /\ y = ( B ` x ) ) ) |
46 |
35 40 45
|
3bitri |
|- ( E. z e. D ( x = z /\ y = ( B ` z ) ) <-> ( x e. D /\ y = ( B ` x ) ) ) |
47 |
46
|
baib |
|- ( x e. D -> ( E. z e. D ( x = z /\ y = ( B ` z ) ) <-> y = ( B ` x ) ) ) |
48 |
47
|
adantl |
|- ( ( B Fn D /\ x e. D ) -> ( E. z e. D ( x = z /\ y = ( B ` z ) ) <-> y = ( B ` x ) ) ) |
49 |
|
eqcom |
|- ( y = ( B ` x ) <-> ( B ` x ) = y ) |
50 |
48 49
|
bitrdi |
|- ( ( B Fn D /\ x e. D ) -> ( E. z e. D ( x = z /\ y = ( B ` z ) ) <-> ( B ` x ) = y ) ) |
51 |
|
fnbrfvb |
|- ( ( B Fn D /\ x e. D ) -> ( ( B ` x ) = y <-> x B y ) ) |
52 |
50 51
|
bitrd |
|- ( ( B Fn D /\ x e. D ) -> ( E. z e. D ( x = z /\ y = ( B ` z ) ) <-> x B y ) ) |
53 |
52
|
pm5.32da |
|- ( B Fn D -> ( ( x e. D /\ E. z e. D ( x = z /\ y = ( B ` z ) ) ) <-> ( x e. D /\ x B y ) ) ) |
54 |
|
fnbr |
|- ( ( B Fn D /\ x B y ) -> x e. D ) |
55 |
54
|
ex |
|- ( B Fn D -> ( x B y -> x e. D ) ) |
56 |
55
|
pm4.71rd |
|- ( B Fn D -> ( x B y <-> ( x e. D /\ x B y ) ) ) |
57 |
|
df-br |
|- ( x B y <-> <. x , y >. e. B ) |
58 |
56 57
|
bitr3di |
|- ( B Fn D -> ( ( x e. D /\ x B y ) <-> <. x , y >. e. B ) ) |
59 |
53 58
|
bitrd |
|- ( B Fn D -> ( ( x e. D /\ E. z e. D ( x = z /\ y = ( B ` z ) ) ) <-> <. x , y >. e. B ) ) |
60 |
34 59
|
sylan9bbr |
|- ( ( B Fn D /\ D e. On ) -> ( ( x e. ( (/) +o D ) /\ E. z e. D ( x = ( (/) +o z ) /\ y = ( B ` z ) ) ) <-> <. x , y >. e. B ) ) |
61 |
25 60
|
sylan9bbr |
|- ( ( ( B Fn D /\ D e. On ) /\ C = (/) ) -> ( ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) <-> <. x , y >. e. B ) ) |
62 |
61
|
opabbidv |
|- ( ( ( B Fn D /\ D e. On ) /\ C = (/) ) -> { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } = { <. x , y >. | <. x , y >. e. B } ) |
63 |
14 62
|
syl |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ A = (/) ) -> { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } = { <. x , y >. | <. x , y >. e. B } ) |
64 |
|
fnrel |
|- ( B Fn D -> Rel B ) |
65 |
|
opabid2 |
|- ( Rel B -> { <. x , y >. | <. x , y >. e. B } = B ) |
66 |
64 65
|
syl |
|- ( B Fn D -> { <. x , y >. | <. x , y >. e. B } = B ) |
67 |
66
|
adantl |
|- ( ( A Fn C /\ B Fn D ) -> { <. x , y >. | <. x , y >. e. B } = B ) |
68 |
67
|
ad2antrr |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ A = (/) ) -> { <. x , y >. | <. x , y >. e. B } = B ) |
69 |
63 68
|
eqtrd |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ A = (/) ) -> { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } = B ) |
70 |
2 69
|
uneq12d |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ A = (/) ) -> ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) = ( (/) u. B ) ) |
71 |
|
0un |
|- ( (/) u. B ) = B |
72 |
70 71
|
eqtrdi |
|- ( ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) /\ A = (/) ) -> ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) = B ) |
73 |
72
|
ex |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( A = (/) -> ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) = B ) ) |
74 |
1
|
tfsconcatun |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( A .+ B ) = ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) ) |
75 |
74
|
eqeq1d |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( ( A .+ B ) = B <-> ( A u. { <. x , y >. | ( x e. ( ( C +o D ) \ C ) /\ E. z e. D ( x = ( C +o z ) /\ y = ( B ` z ) ) ) } ) = B ) ) |
76 |
73 75
|
sylibrd |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( A = (/) -> ( A .+ B ) = B ) ) |