| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tfsconcat.op |
|- .+ = ( a e. _V , b e. _V |-> ( a u. { <. x , y >. | ( x e. ( ( dom a +o dom b ) \ dom a ) /\ E. z e. dom b ( x = ( dom a +o z ) /\ y = ( b ` z ) ) ) } ) ) |
| 2 |
|
nnon |
|- ( D e. _om -> D e. On ) |
| 3 |
2
|
anim2i |
|- ( ( C e. On /\ D e. _om ) -> ( C e. On /\ D e. On ) ) |
| 4 |
3
|
anim2i |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. _om ) ) -> ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) ) |
| 5 |
1
|
tfsconcat0i |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( A = (/) -> ( A .+ B ) = B ) ) |
| 6 |
4 5
|
syl |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. _om ) ) -> ( A = (/) -> ( A .+ B ) = B ) ) |
| 7 |
|
dmeq |
|- ( ( A .+ B ) = B -> dom ( A .+ B ) = dom B ) |
| 8 |
|
nna0r |
|- ( D e. _om -> ( (/) +o D ) = D ) |
| 9 |
8
|
adantl |
|- ( ( C e. On /\ D e. _om ) -> ( (/) +o D ) = D ) |
| 10 |
9
|
eqeq2d |
|- ( ( C e. On /\ D e. _om ) -> ( ( C +o D ) = ( (/) +o D ) <-> ( C +o D ) = D ) ) |
| 11 |
|
eqcom |
|- ( ( C +o D ) = ( (/) +o D ) <-> ( (/) +o D ) = ( C +o D ) ) |
| 12 |
10 11
|
bitr3di |
|- ( ( C e. On /\ D e. _om ) -> ( ( C +o D ) = D <-> ( (/) +o D ) = ( C +o D ) ) ) |
| 13 |
|
on0eln0 |
|- ( C e. On -> ( (/) e. C <-> C =/= (/) ) ) |
| 14 |
13
|
adantr |
|- ( ( C e. On /\ D e. _om ) -> ( (/) e. C <-> C =/= (/) ) ) |
| 15 |
|
df-ne |
|- ( C =/= (/) <-> -. C = (/) ) |
| 16 |
14 15
|
bitr2di |
|- ( ( C e. On /\ D e. _om ) -> ( -. C = (/) <-> (/) e. C ) ) |
| 17 |
|
peano1 |
|- (/) e. _om |
| 18 |
|
nnaordr |
|- ( ( (/) e. _om /\ C e. _om /\ D e. _om ) -> ( (/) e. C <-> ( (/) +o D ) e. ( C +o D ) ) ) |
| 19 |
17 18
|
mp3an1 |
|- ( ( C e. _om /\ D e. _om ) -> ( (/) e. C <-> ( (/) +o D ) e. ( C +o D ) ) ) |
| 20 |
19
|
biimpd |
|- ( ( C e. _om /\ D e. _om ) -> ( (/) e. C -> ( (/) +o D ) e. ( C +o D ) ) ) |
| 21 |
20
|
ex |
|- ( C e. _om -> ( D e. _om -> ( (/) e. C -> ( (/) +o D ) e. ( C +o D ) ) ) ) |
| 22 |
21
|
a1i |
|- ( C e. On -> ( C e. _om -> ( D e. _om -> ( (/) e. C -> ( (/) +o D ) e. ( C +o D ) ) ) ) ) |
| 23 |
|
simpr |
|- ( ( ( C e. On /\ D e. _om ) /\ _om C_ C ) -> _om C_ C ) |
| 24 |
|
oaword1 |
|- ( ( C e. On /\ D e. On ) -> C C_ ( C +o D ) ) |
| 25 |
3 24
|
syl |
|- ( ( C e. On /\ D e. _om ) -> C C_ ( C +o D ) ) |
| 26 |
25
|
adantr |
|- ( ( ( C e. On /\ D e. _om ) /\ _om C_ C ) -> C C_ ( C +o D ) ) |
| 27 |
23 26
|
sstrd |
|- ( ( ( C e. On /\ D e. _om ) /\ _om C_ C ) -> _om C_ ( C +o D ) ) |
| 28 |
|
id |
|- ( D e. _om -> D e. _om ) |
| 29 |
8 28
|
eqeltrd |
|- ( D e. _om -> ( (/) +o D ) e. _om ) |
| 30 |
29
|
ad2antlr |
|- ( ( ( C e. On /\ D e. _om ) /\ _om C_ C ) -> ( (/) +o D ) e. _om ) |
| 31 |
27 30
|
sseldd |
|- ( ( ( C e. On /\ D e. _om ) /\ _om C_ C ) -> ( (/) +o D ) e. ( C +o D ) ) |
| 32 |
31
|
a1d |
|- ( ( ( C e. On /\ D e. _om ) /\ _om C_ C ) -> ( (/) e. C -> ( (/) +o D ) e. ( C +o D ) ) ) |
| 33 |
32
|
exp31 |
|- ( C e. On -> ( D e. _om -> ( _om C_ C -> ( (/) e. C -> ( (/) +o D ) e. ( C +o D ) ) ) ) ) |
| 34 |
33
|
com23 |
|- ( C e. On -> ( _om C_ C -> ( D e. _om -> ( (/) e. C -> ( (/) +o D ) e. ( C +o D ) ) ) ) ) |
| 35 |
|
eloni |
|- ( C e. On -> Ord C ) |
| 36 |
|
ordom |
|- Ord _om |
| 37 |
|
ordtri2or |
|- ( ( Ord C /\ Ord _om ) -> ( C e. _om \/ _om C_ C ) ) |
| 38 |
35 36 37
|
sylancl |
|- ( C e. On -> ( C e. _om \/ _om C_ C ) ) |
| 39 |
22 34 38
|
mpjaod |
|- ( C e. On -> ( D e. _om -> ( (/) e. C -> ( (/) +o D ) e. ( C +o D ) ) ) ) |
| 40 |
39
|
imp |
|- ( ( C e. On /\ D e. _om ) -> ( (/) e. C -> ( (/) +o D ) e. ( C +o D ) ) ) |
| 41 |
|
elneq |
|- ( ( (/) +o D ) e. ( C +o D ) -> ( (/) +o D ) =/= ( C +o D ) ) |
| 42 |
41
|
neneqd |
|- ( ( (/) +o D ) e. ( C +o D ) -> -. ( (/) +o D ) = ( C +o D ) ) |
| 43 |
40 42
|
syl6 |
|- ( ( C e. On /\ D e. _om ) -> ( (/) e. C -> -. ( (/) +o D ) = ( C +o D ) ) ) |
| 44 |
16 43
|
sylbid |
|- ( ( C e. On /\ D e. _om ) -> ( -. C = (/) -> -. ( (/) +o D ) = ( C +o D ) ) ) |
| 45 |
44
|
con4d |
|- ( ( C e. On /\ D e. _om ) -> ( ( (/) +o D ) = ( C +o D ) -> C = (/) ) ) |
| 46 |
12 45
|
sylbid |
|- ( ( C e. On /\ D e. _om ) -> ( ( C +o D ) = D -> C = (/) ) ) |
| 47 |
46
|
adantl |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. _om ) ) -> ( ( C +o D ) = D -> C = (/) ) ) |
| 48 |
1
|
tfsconcatfn |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( A .+ B ) Fn ( C +o D ) ) |
| 49 |
4 48
|
syl |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. _om ) ) -> ( A .+ B ) Fn ( C +o D ) ) |
| 50 |
49
|
fndmd |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. _om ) ) -> dom ( A .+ B ) = ( C +o D ) ) |
| 51 |
|
fndm |
|- ( B Fn D -> dom B = D ) |
| 52 |
51
|
ad2antlr |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. _om ) ) -> dom B = D ) |
| 53 |
50 52
|
eqeq12d |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. _om ) ) -> ( dom ( A .+ B ) = dom B <-> ( C +o D ) = D ) ) |
| 54 |
|
fnrel |
|- ( A Fn C -> Rel A ) |
| 55 |
|
reldm0 |
|- ( Rel A -> ( A = (/) <-> dom A = (/) ) ) |
| 56 |
54 55
|
syl |
|- ( A Fn C -> ( A = (/) <-> dom A = (/) ) ) |
| 57 |
|
fndm |
|- ( A Fn C -> dom A = C ) |
| 58 |
57
|
eqeq1d |
|- ( A Fn C -> ( dom A = (/) <-> C = (/) ) ) |
| 59 |
56 58
|
bitrd |
|- ( A Fn C -> ( A = (/) <-> C = (/) ) ) |
| 60 |
59
|
adantr |
|- ( ( A Fn C /\ B Fn D ) -> ( A = (/) <-> C = (/) ) ) |
| 61 |
60
|
adantr |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. _om ) ) -> ( A = (/) <-> C = (/) ) ) |
| 62 |
47 53 61
|
3imtr4d |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. _om ) ) -> ( dom ( A .+ B ) = dom B -> A = (/) ) ) |
| 63 |
7 62
|
syl5 |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. _om ) ) -> ( ( A .+ B ) = B -> A = (/) ) ) |
| 64 |
6 63
|
impbid |
|- ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. _om ) ) -> ( A = (/) <-> ( A .+ B ) = B ) ) |