| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfsconcat.op |  |-  .+ = ( a e. _V , b e. _V |-> ( a u. { <. x , y >. | ( x e. ( ( dom a +o dom b ) \ dom a ) /\ E. z e. dom b ( x = ( dom a +o z ) /\ y = ( b ` z ) ) ) } ) ) | 
						
							| 2 |  | nnon |  |-  ( D e. _om -> D e. On ) | 
						
							| 3 | 2 | anim2i |  |-  ( ( C e. On /\ D e. _om ) -> ( C e. On /\ D e. On ) ) | 
						
							| 4 | 3 | anim2i |  |-  ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. _om ) ) -> ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) ) | 
						
							| 5 | 1 | tfsconcat0i |  |-  ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( A = (/) -> ( A .+ B ) = B ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. _om ) ) -> ( A = (/) -> ( A .+ B ) = B ) ) | 
						
							| 7 |  | dmeq |  |-  ( ( A .+ B ) = B -> dom ( A .+ B ) = dom B ) | 
						
							| 8 |  | nna0r |  |-  ( D e. _om -> ( (/) +o D ) = D ) | 
						
							| 9 | 8 | adantl |  |-  ( ( C e. On /\ D e. _om ) -> ( (/) +o D ) = D ) | 
						
							| 10 | 9 | eqeq2d |  |-  ( ( C e. On /\ D e. _om ) -> ( ( C +o D ) = ( (/) +o D ) <-> ( C +o D ) = D ) ) | 
						
							| 11 |  | eqcom |  |-  ( ( C +o D ) = ( (/) +o D ) <-> ( (/) +o D ) = ( C +o D ) ) | 
						
							| 12 | 10 11 | bitr3di |  |-  ( ( C e. On /\ D e. _om ) -> ( ( C +o D ) = D <-> ( (/) +o D ) = ( C +o D ) ) ) | 
						
							| 13 |  | on0eln0 |  |-  ( C e. On -> ( (/) e. C <-> C =/= (/) ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( C e. On /\ D e. _om ) -> ( (/) e. C <-> C =/= (/) ) ) | 
						
							| 15 |  | df-ne |  |-  ( C =/= (/) <-> -. C = (/) ) | 
						
							| 16 | 14 15 | bitr2di |  |-  ( ( C e. On /\ D e. _om ) -> ( -. C = (/) <-> (/) e. C ) ) | 
						
							| 17 |  | peano1 |  |-  (/) e. _om | 
						
							| 18 |  | nnaordr |  |-  ( ( (/) e. _om /\ C e. _om /\ D e. _om ) -> ( (/) e. C <-> ( (/) +o D ) e. ( C +o D ) ) ) | 
						
							| 19 | 17 18 | mp3an1 |  |-  ( ( C e. _om /\ D e. _om ) -> ( (/) e. C <-> ( (/) +o D ) e. ( C +o D ) ) ) | 
						
							| 20 | 19 | biimpd |  |-  ( ( C e. _om /\ D e. _om ) -> ( (/) e. C -> ( (/) +o D ) e. ( C +o D ) ) ) | 
						
							| 21 | 20 | ex |  |-  ( C e. _om -> ( D e. _om -> ( (/) e. C -> ( (/) +o D ) e. ( C +o D ) ) ) ) | 
						
							| 22 | 21 | a1i |  |-  ( C e. On -> ( C e. _om -> ( D e. _om -> ( (/) e. C -> ( (/) +o D ) e. ( C +o D ) ) ) ) ) | 
						
							| 23 |  | simpr |  |-  ( ( ( C e. On /\ D e. _om ) /\ _om C_ C ) -> _om C_ C ) | 
						
							| 24 |  | oaword1 |  |-  ( ( C e. On /\ D e. On ) -> C C_ ( C +o D ) ) | 
						
							| 25 | 3 24 | syl |  |-  ( ( C e. On /\ D e. _om ) -> C C_ ( C +o D ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ( C e. On /\ D e. _om ) /\ _om C_ C ) -> C C_ ( C +o D ) ) | 
						
							| 27 | 23 26 | sstrd |  |-  ( ( ( C e. On /\ D e. _om ) /\ _om C_ C ) -> _om C_ ( C +o D ) ) | 
						
							| 28 |  | id |  |-  ( D e. _om -> D e. _om ) | 
						
							| 29 | 8 28 | eqeltrd |  |-  ( D e. _om -> ( (/) +o D ) e. _om ) | 
						
							| 30 | 29 | ad2antlr |  |-  ( ( ( C e. On /\ D e. _om ) /\ _om C_ C ) -> ( (/) +o D ) e. _om ) | 
						
							| 31 | 27 30 | sseldd |  |-  ( ( ( C e. On /\ D e. _om ) /\ _om C_ C ) -> ( (/) +o D ) e. ( C +o D ) ) | 
						
							| 32 | 31 | a1d |  |-  ( ( ( C e. On /\ D e. _om ) /\ _om C_ C ) -> ( (/) e. C -> ( (/) +o D ) e. ( C +o D ) ) ) | 
						
							| 33 | 32 | exp31 |  |-  ( C e. On -> ( D e. _om -> ( _om C_ C -> ( (/) e. C -> ( (/) +o D ) e. ( C +o D ) ) ) ) ) | 
						
							| 34 | 33 | com23 |  |-  ( C e. On -> ( _om C_ C -> ( D e. _om -> ( (/) e. C -> ( (/) +o D ) e. ( C +o D ) ) ) ) ) | 
						
							| 35 |  | eloni |  |-  ( C e. On -> Ord C ) | 
						
							| 36 |  | ordom |  |-  Ord _om | 
						
							| 37 |  | ordtri2or |  |-  ( ( Ord C /\ Ord _om ) -> ( C e. _om \/ _om C_ C ) ) | 
						
							| 38 | 35 36 37 | sylancl |  |-  ( C e. On -> ( C e. _om \/ _om C_ C ) ) | 
						
							| 39 | 22 34 38 | mpjaod |  |-  ( C e. On -> ( D e. _om -> ( (/) e. C -> ( (/) +o D ) e. ( C +o D ) ) ) ) | 
						
							| 40 | 39 | imp |  |-  ( ( C e. On /\ D e. _om ) -> ( (/) e. C -> ( (/) +o D ) e. ( C +o D ) ) ) | 
						
							| 41 |  | elneq |  |-  ( ( (/) +o D ) e. ( C +o D ) -> ( (/) +o D ) =/= ( C +o D ) ) | 
						
							| 42 | 41 | neneqd |  |-  ( ( (/) +o D ) e. ( C +o D ) -> -. ( (/) +o D ) = ( C +o D ) ) | 
						
							| 43 | 40 42 | syl6 |  |-  ( ( C e. On /\ D e. _om ) -> ( (/) e. C -> -. ( (/) +o D ) = ( C +o D ) ) ) | 
						
							| 44 | 16 43 | sylbid |  |-  ( ( C e. On /\ D e. _om ) -> ( -. C = (/) -> -. ( (/) +o D ) = ( C +o D ) ) ) | 
						
							| 45 | 44 | con4d |  |-  ( ( C e. On /\ D e. _om ) -> ( ( (/) +o D ) = ( C +o D ) -> C = (/) ) ) | 
						
							| 46 | 12 45 | sylbid |  |-  ( ( C e. On /\ D e. _om ) -> ( ( C +o D ) = D -> C = (/) ) ) | 
						
							| 47 | 46 | adantl |  |-  ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. _om ) ) -> ( ( C +o D ) = D -> C = (/) ) ) | 
						
							| 48 | 1 | tfsconcatfn |  |-  ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. On ) ) -> ( A .+ B ) Fn ( C +o D ) ) | 
						
							| 49 | 4 48 | syl |  |-  ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. _om ) ) -> ( A .+ B ) Fn ( C +o D ) ) | 
						
							| 50 | 49 | fndmd |  |-  ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. _om ) ) -> dom ( A .+ B ) = ( C +o D ) ) | 
						
							| 51 |  | fndm |  |-  ( B Fn D -> dom B = D ) | 
						
							| 52 | 51 | ad2antlr |  |-  ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. _om ) ) -> dom B = D ) | 
						
							| 53 | 50 52 | eqeq12d |  |-  ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. _om ) ) -> ( dom ( A .+ B ) = dom B <-> ( C +o D ) = D ) ) | 
						
							| 54 |  | fnrel |  |-  ( A Fn C -> Rel A ) | 
						
							| 55 |  | reldm0 |  |-  ( Rel A -> ( A = (/) <-> dom A = (/) ) ) | 
						
							| 56 | 54 55 | syl |  |-  ( A Fn C -> ( A = (/) <-> dom A = (/) ) ) | 
						
							| 57 |  | fndm |  |-  ( A Fn C -> dom A = C ) | 
						
							| 58 | 57 | eqeq1d |  |-  ( A Fn C -> ( dom A = (/) <-> C = (/) ) ) | 
						
							| 59 | 56 58 | bitrd |  |-  ( A Fn C -> ( A = (/) <-> C = (/) ) ) | 
						
							| 60 | 59 | adantr |  |-  ( ( A Fn C /\ B Fn D ) -> ( A = (/) <-> C = (/) ) ) | 
						
							| 61 | 60 | adantr |  |-  ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. _om ) ) -> ( A = (/) <-> C = (/) ) ) | 
						
							| 62 | 47 53 61 | 3imtr4d |  |-  ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. _om ) ) -> ( dom ( A .+ B ) = dom B -> A = (/) ) ) | 
						
							| 63 | 7 62 | syl5 |  |-  ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. _om ) ) -> ( ( A .+ B ) = B -> A = (/) ) ) | 
						
							| 64 | 6 63 | impbid |  |-  ( ( ( A Fn C /\ B Fn D ) /\ ( C e. On /\ D e. _om ) ) -> ( A = (/) <-> ( A .+ B ) = B ) ) |