Metamath Proof Explorer


Theorem tfsconcat0b

Description: The concatentation with the empty series leaves the finite series unchanged. (Contributed by RP, 1-Mar-2025)

Ref Expression
Hypothesis tfsconcat.op + = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑎 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ( dom 𝑎 +o dom 𝑏 ) ∖ dom 𝑎 ) ∧ ∃ 𝑧 ∈ dom 𝑏 ( 𝑥 = ( dom 𝑎 +o 𝑧 ) ∧ 𝑦 = ( 𝑏𝑧 ) ) ) } ) )
Assertion tfsconcat0b ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) ) → ( 𝐴 = ∅ ↔ ( 𝐴 + 𝐵 ) = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 tfsconcat.op + = ( 𝑎 ∈ V , 𝑏 ∈ V ↦ ( 𝑎 ∪ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 ∈ ( ( dom 𝑎 +o dom 𝑏 ) ∖ dom 𝑎 ) ∧ ∃ 𝑧 ∈ dom 𝑏 ( 𝑥 = ( dom 𝑎 +o 𝑧 ) ∧ 𝑦 = ( 𝑏𝑧 ) ) ) } ) )
2 nnon ( 𝐷 ∈ ω → 𝐷 ∈ On )
3 2 anim2i ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) → ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) )
4 3 anim2i ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) ) → ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) )
5 1 tfsconcat0i ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝐴 = ∅ → ( 𝐴 + 𝐵 ) = 𝐵 ) )
6 4 5 syl ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) ) → ( 𝐴 = ∅ → ( 𝐴 + 𝐵 ) = 𝐵 ) )
7 dmeq ( ( 𝐴 + 𝐵 ) = 𝐵 → dom ( 𝐴 + 𝐵 ) = dom 𝐵 )
8 nna0r ( 𝐷 ∈ ω → ( ∅ +o 𝐷 ) = 𝐷 )
9 8 adantl ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) → ( ∅ +o 𝐷 ) = 𝐷 )
10 9 eqeq2d ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) → ( ( 𝐶 +o 𝐷 ) = ( ∅ +o 𝐷 ) ↔ ( 𝐶 +o 𝐷 ) = 𝐷 ) )
11 eqcom ( ( 𝐶 +o 𝐷 ) = ( ∅ +o 𝐷 ) ↔ ( ∅ +o 𝐷 ) = ( 𝐶 +o 𝐷 ) )
12 10 11 bitr3di ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) → ( ( 𝐶 +o 𝐷 ) = 𝐷 ↔ ( ∅ +o 𝐷 ) = ( 𝐶 +o 𝐷 ) ) )
13 on0eln0 ( 𝐶 ∈ On → ( ∅ ∈ 𝐶𝐶 ≠ ∅ ) )
14 13 adantr ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) → ( ∅ ∈ 𝐶𝐶 ≠ ∅ ) )
15 df-ne ( 𝐶 ≠ ∅ ↔ ¬ 𝐶 = ∅ )
16 14 15 bitr2di ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) → ( ¬ 𝐶 = ∅ ↔ ∅ ∈ 𝐶 ) )
17 peano1 ∅ ∈ ω
18 nnaordr ( ( ∅ ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐷 ∈ ω ) → ( ∅ ∈ 𝐶 ↔ ( ∅ +o 𝐷 ) ∈ ( 𝐶 +o 𝐷 ) ) )
19 17 18 mp3an1 ( ( 𝐶 ∈ ω ∧ 𝐷 ∈ ω ) → ( ∅ ∈ 𝐶 ↔ ( ∅ +o 𝐷 ) ∈ ( 𝐶 +o 𝐷 ) ) )
20 19 biimpd ( ( 𝐶 ∈ ω ∧ 𝐷 ∈ ω ) → ( ∅ ∈ 𝐶 → ( ∅ +o 𝐷 ) ∈ ( 𝐶 +o 𝐷 ) ) )
21 20 ex ( 𝐶 ∈ ω → ( 𝐷 ∈ ω → ( ∅ ∈ 𝐶 → ( ∅ +o 𝐷 ) ∈ ( 𝐶 +o 𝐷 ) ) ) )
22 21 a1i ( 𝐶 ∈ On → ( 𝐶 ∈ ω → ( 𝐷 ∈ ω → ( ∅ ∈ 𝐶 → ( ∅ +o 𝐷 ) ∈ ( 𝐶 +o 𝐷 ) ) ) ) )
23 simpr ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) ∧ ω ⊆ 𝐶 ) → ω ⊆ 𝐶 )
24 oaword1 ( ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) → 𝐶 ⊆ ( 𝐶 +o 𝐷 ) )
25 3 24 syl ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) → 𝐶 ⊆ ( 𝐶 +o 𝐷 ) )
26 25 adantr ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) ∧ ω ⊆ 𝐶 ) → 𝐶 ⊆ ( 𝐶 +o 𝐷 ) )
27 23 26 sstrd ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) ∧ ω ⊆ 𝐶 ) → ω ⊆ ( 𝐶 +o 𝐷 ) )
28 id ( 𝐷 ∈ ω → 𝐷 ∈ ω )
29 8 28 eqeltrd ( 𝐷 ∈ ω → ( ∅ +o 𝐷 ) ∈ ω )
30 29 ad2antlr ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) ∧ ω ⊆ 𝐶 ) → ( ∅ +o 𝐷 ) ∈ ω )
31 27 30 sseldd ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) ∧ ω ⊆ 𝐶 ) → ( ∅ +o 𝐷 ) ∈ ( 𝐶 +o 𝐷 ) )
32 31 a1d ( ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) ∧ ω ⊆ 𝐶 ) → ( ∅ ∈ 𝐶 → ( ∅ +o 𝐷 ) ∈ ( 𝐶 +o 𝐷 ) ) )
33 32 exp31 ( 𝐶 ∈ On → ( 𝐷 ∈ ω → ( ω ⊆ 𝐶 → ( ∅ ∈ 𝐶 → ( ∅ +o 𝐷 ) ∈ ( 𝐶 +o 𝐷 ) ) ) ) )
34 33 com23 ( 𝐶 ∈ On → ( ω ⊆ 𝐶 → ( 𝐷 ∈ ω → ( ∅ ∈ 𝐶 → ( ∅ +o 𝐷 ) ∈ ( 𝐶 +o 𝐷 ) ) ) ) )
35 eloni ( 𝐶 ∈ On → Ord 𝐶 )
36 ordom Ord ω
37 ordtri2or ( ( Ord 𝐶 ∧ Ord ω ) → ( 𝐶 ∈ ω ∨ ω ⊆ 𝐶 ) )
38 35 36 37 sylancl ( 𝐶 ∈ On → ( 𝐶 ∈ ω ∨ ω ⊆ 𝐶 ) )
39 22 34 38 mpjaod ( 𝐶 ∈ On → ( 𝐷 ∈ ω → ( ∅ ∈ 𝐶 → ( ∅ +o 𝐷 ) ∈ ( 𝐶 +o 𝐷 ) ) ) )
40 39 imp ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) → ( ∅ ∈ 𝐶 → ( ∅ +o 𝐷 ) ∈ ( 𝐶 +o 𝐷 ) ) )
41 elneq ( ( ∅ +o 𝐷 ) ∈ ( 𝐶 +o 𝐷 ) → ( ∅ +o 𝐷 ) ≠ ( 𝐶 +o 𝐷 ) )
42 41 neneqd ( ( ∅ +o 𝐷 ) ∈ ( 𝐶 +o 𝐷 ) → ¬ ( ∅ +o 𝐷 ) = ( 𝐶 +o 𝐷 ) )
43 40 42 syl6 ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) → ( ∅ ∈ 𝐶 → ¬ ( ∅ +o 𝐷 ) = ( 𝐶 +o 𝐷 ) ) )
44 16 43 sylbid ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) → ( ¬ 𝐶 = ∅ → ¬ ( ∅ +o 𝐷 ) = ( 𝐶 +o 𝐷 ) ) )
45 44 con4d ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) → ( ( ∅ +o 𝐷 ) = ( 𝐶 +o 𝐷 ) → 𝐶 = ∅ ) )
46 12 45 sylbid ( ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) → ( ( 𝐶 +o 𝐷 ) = 𝐷𝐶 = ∅ ) )
47 46 adantl ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) ) → ( ( 𝐶 +o 𝐷 ) = 𝐷𝐶 = ∅ ) )
48 1 tfsconcatfn ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ On ) ) → ( 𝐴 + 𝐵 ) Fn ( 𝐶 +o 𝐷 ) )
49 4 48 syl ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) ) → ( 𝐴 + 𝐵 ) Fn ( 𝐶 +o 𝐷 ) )
50 49 fndmd ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) ) → dom ( 𝐴 + 𝐵 ) = ( 𝐶 +o 𝐷 ) )
51 fndm ( 𝐵 Fn 𝐷 → dom 𝐵 = 𝐷 )
52 51 ad2antlr ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) ) → dom 𝐵 = 𝐷 )
53 50 52 eqeq12d ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) ) → ( dom ( 𝐴 + 𝐵 ) = dom 𝐵 ↔ ( 𝐶 +o 𝐷 ) = 𝐷 ) )
54 fnrel ( 𝐴 Fn 𝐶 → Rel 𝐴 )
55 reldm0 ( Rel 𝐴 → ( 𝐴 = ∅ ↔ dom 𝐴 = ∅ ) )
56 54 55 syl ( 𝐴 Fn 𝐶 → ( 𝐴 = ∅ ↔ dom 𝐴 = ∅ ) )
57 fndm ( 𝐴 Fn 𝐶 → dom 𝐴 = 𝐶 )
58 57 eqeq1d ( 𝐴 Fn 𝐶 → ( dom 𝐴 = ∅ ↔ 𝐶 = ∅ ) )
59 56 58 bitrd ( 𝐴 Fn 𝐶 → ( 𝐴 = ∅ ↔ 𝐶 = ∅ ) )
60 59 adantr ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) → ( 𝐴 = ∅ ↔ 𝐶 = ∅ ) )
61 60 adantr ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) ) → ( 𝐴 = ∅ ↔ 𝐶 = ∅ ) )
62 47 53 61 3imtr4d ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) ) → ( dom ( 𝐴 + 𝐵 ) = dom 𝐵𝐴 = ∅ ) )
63 7 62 syl5 ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) ) → ( ( 𝐴 + 𝐵 ) = 𝐵𝐴 = ∅ ) )
64 6 63 impbid ( ( ( 𝐴 Fn 𝐶𝐵 Fn 𝐷 ) ∧ ( 𝐶 ∈ On ∧ 𝐷 ∈ ω ) ) → ( 𝐴 = ∅ ↔ ( 𝐴 + 𝐵 ) = 𝐵 ) )