Step |
Hyp |
Ref |
Expression |
1 |
|
tfsconcat.op |
|
2 |
|
nnon |
|
3 |
2
|
anim2i |
|
4 |
3
|
anim2i |
|
5 |
1
|
tfsconcat0i |
|
6 |
4 5
|
syl |
|
7 |
|
dmeq |
|
8 |
|
nna0r |
|
9 |
8
|
adantl |
|
10 |
9
|
eqeq2d |
|
11 |
|
eqcom |
|
12 |
10 11
|
bitr3di |
|
13 |
|
on0eln0 |
|
14 |
13
|
adantr |
|
15 |
|
df-ne |
|
16 |
14 15
|
bitr2di |
|
17 |
|
peano1 |
|
18 |
|
nnaordr |
|
19 |
17 18
|
mp3an1 |
|
20 |
19
|
biimpd |
|
21 |
20
|
ex |
|
22 |
21
|
a1i |
|
23 |
|
simpr |
|
24 |
|
oaword1 |
|
25 |
3 24
|
syl |
|
26 |
25
|
adantr |
|
27 |
23 26
|
sstrd |
|
28 |
|
id |
|
29 |
8 28
|
eqeltrd |
|
30 |
29
|
ad2antlr |
|
31 |
27 30
|
sseldd |
|
32 |
31
|
a1d |
|
33 |
32
|
exp31 |
|
34 |
33
|
com23 |
|
35 |
|
eloni |
|
36 |
|
ordom |
|
37 |
|
ordtri2or |
|
38 |
35 36 37
|
sylancl |
|
39 |
22 34 38
|
mpjaod |
|
40 |
39
|
imp |
|
41 |
|
elneq |
|
42 |
41
|
neneqd |
|
43 |
40 42
|
syl6 |
|
44 |
16 43
|
sylbid |
|
45 |
44
|
con4d |
|
46 |
12 45
|
sylbid |
|
47 |
46
|
adantl |
|
48 |
1
|
tfsconcatfn |
|
49 |
4 48
|
syl |
|
50 |
49
|
fndmd |
|
51 |
|
fndm |
|
52 |
51
|
ad2antlr |
|
53 |
50 52
|
eqeq12d |
|
54 |
|
fnrel |
|
55 |
|
reldm0 |
|
56 |
54 55
|
syl |
|
57 |
|
fndm |
|
58 |
57
|
eqeq1d |
|
59 |
56 58
|
bitrd |
|
60 |
59
|
adantr |
|
61 |
60
|
adantr |
|
62 |
47 53 61
|
3imtr4d |
|
63 |
7 62
|
syl5 |
|
64 |
6 63
|
impbid |
|