Step |
Hyp |
Ref |
Expression |
1 |
|
tfsconcat.op |
|
2 |
|
simpr |
|
3 |
|
fnrel |
|
4 |
|
reldm0 |
|
5 |
3 4
|
syl |
|
6 |
|
fndm |
|
7 |
6
|
eqeq1d |
|
8 |
5 7
|
bitrd |
|
9 |
8
|
ad2antrr |
|
10 |
|
simpr |
|
11 |
|
simpr |
|
12 |
10 11
|
anim12i |
|
13 |
12
|
anim1i |
|
14 |
9 13
|
sylbida |
|
15 |
|
oveq1 |
|
16 |
|
id |
|
17 |
15 16
|
difeq12d |
|
18 |
|
dif0 |
|
19 |
17 18
|
eqtrdi |
|
20 |
19
|
eleq2d |
|
21 |
|
oveq1 |
|
22 |
21
|
eqeq2d |
|
23 |
22
|
anbi1d |
|
24 |
23
|
rexbidv |
|
25 |
20 24
|
anbi12d |
|
26 |
|
oa0r |
|
27 |
26
|
eleq2d |
|
28 |
|
onelon |
|
29 |
|
oa0r |
|
30 |
29
|
eqeq2d |
|
31 |
30
|
anbi1d |
|
32 |
28 31
|
syl |
|
33 |
32
|
rexbidva |
|
34 |
27 33
|
anbi12d |
|
35 |
|
df-rex |
|
36 |
|
an12 |
|
37 |
|
eqcom |
|
38 |
37
|
anbi1i |
|
39 |
36 38
|
bitri |
|
40 |
39
|
exbii |
|
41 |
|
eleq1w |
|
42 |
|
fveq2 |
|
43 |
42
|
eqeq2d |
|
44 |
41 43
|
anbi12d |
|
45 |
44
|
equsexvw |
|
46 |
35 40 45
|
3bitri |
|
47 |
46
|
baib |
|
48 |
47
|
adantl |
|
49 |
|
eqcom |
|
50 |
48 49
|
bitrdi |
|
51 |
|
fnbrfvb |
|
52 |
50 51
|
bitrd |
|
53 |
52
|
pm5.32da |
|
54 |
|
fnbr |
|
55 |
54
|
ex |
|
56 |
55
|
pm4.71rd |
|
57 |
|
df-br |
|
58 |
56 57
|
bitr3di |
|
59 |
53 58
|
bitrd |
|
60 |
34 59
|
sylan9bbr |
|
61 |
25 60
|
sylan9bbr |
|
62 |
61
|
opabbidv |
|
63 |
14 62
|
syl |
|
64 |
|
fnrel |
|
65 |
|
opabid2 |
|
66 |
64 65
|
syl |
|
67 |
66
|
adantl |
|
68 |
67
|
ad2antrr |
|
69 |
63 68
|
eqtrd |
|
70 |
2 69
|
uneq12d |
|
71 |
|
0un |
|
72 |
70 71
|
eqtrdi |
|
73 |
72
|
ex |
|
74 |
1
|
tfsconcatun |
|
75 |
74
|
eqeq1d |
|
76 |
73 75
|
sylibrd |
|