| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tfsconcat.op |
|
| 2 |
|
simpr |
|
| 3 |
|
fnrel |
|
| 4 |
|
reldm0 |
|
| 5 |
3 4
|
syl |
|
| 6 |
|
fndm |
|
| 7 |
6
|
eqeq1d |
|
| 8 |
5 7
|
bitrd |
|
| 9 |
8
|
ad2antrr |
|
| 10 |
|
simpr |
|
| 11 |
|
simpr |
|
| 12 |
10 11
|
anim12i |
|
| 13 |
12
|
anim1i |
|
| 14 |
9 13
|
sylbida |
|
| 15 |
|
oveq1 |
|
| 16 |
|
id |
|
| 17 |
15 16
|
difeq12d |
|
| 18 |
|
dif0 |
|
| 19 |
17 18
|
eqtrdi |
|
| 20 |
19
|
eleq2d |
|
| 21 |
|
oveq1 |
|
| 22 |
21
|
eqeq2d |
|
| 23 |
22
|
anbi1d |
|
| 24 |
23
|
rexbidv |
|
| 25 |
20 24
|
anbi12d |
|
| 26 |
|
oa0r |
|
| 27 |
26
|
eleq2d |
|
| 28 |
|
onelon |
|
| 29 |
|
oa0r |
|
| 30 |
29
|
eqeq2d |
|
| 31 |
30
|
anbi1d |
|
| 32 |
28 31
|
syl |
|
| 33 |
32
|
rexbidva |
|
| 34 |
27 33
|
anbi12d |
|
| 35 |
|
df-rex |
|
| 36 |
|
an12 |
|
| 37 |
|
eqcom |
|
| 38 |
37
|
anbi1i |
|
| 39 |
36 38
|
bitri |
|
| 40 |
39
|
exbii |
|
| 41 |
|
eleq1w |
|
| 42 |
|
fveq2 |
|
| 43 |
42
|
eqeq2d |
|
| 44 |
41 43
|
anbi12d |
|
| 45 |
44
|
equsexvw |
|
| 46 |
35 40 45
|
3bitri |
|
| 47 |
46
|
baib |
|
| 48 |
47
|
adantl |
|
| 49 |
|
eqcom |
|
| 50 |
48 49
|
bitrdi |
|
| 51 |
|
fnbrfvb |
|
| 52 |
50 51
|
bitrd |
|
| 53 |
52
|
pm5.32da |
|
| 54 |
|
fnbr |
|
| 55 |
54
|
ex |
|
| 56 |
55
|
pm4.71rd |
|
| 57 |
|
df-br |
|
| 58 |
56 57
|
bitr3di |
|
| 59 |
53 58
|
bitrd |
|
| 60 |
34 59
|
sylan9bbr |
|
| 61 |
25 60
|
sylan9bbr |
|
| 62 |
61
|
opabbidv |
|
| 63 |
14 62
|
syl |
|
| 64 |
|
fnrel |
|
| 65 |
|
opabid2 |
|
| 66 |
64 65
|
syl |
|
| 67 |
66
|
adantl |
|
| 68 |
67
|
ad2antrr |
|
| 69 |
63 68
|
eqtrd |
|
| 70 |
2 69
|
uneq12d |
|
| 71 |
|
0un |
|
| 72 |
70 71
|
eqtrdi |
|
| 73 |
72
|
ex |
|
| 74 |
1
|
tfsconcatun |
|
| 75 |
74
|
eqeq1d |
|
| 76 |
73 75
|
sylibrd |
|