| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tfsconcat.op |  | 
						
							| 2 |  | fnrel |  | 
						
							| 3 |  | reldm0 |  | 
						
							| 4 | 2 3 | syl |  | 
						
							| 5 |  | fndm |  | 
						
							| 6 | 5 | eqeq1d |  | 
						
							| 7 | 4 6 | bitrd |  | 
						
							| 8 | 7 | ad2antlr |  | 
						
							| 9 |  | rex0 |  | 
						
							| 10 |  | rexeq |  | 
						
							| 11 | 10 | adantl |  | 
						
							| 12 | 9 11 | mtbiri |  | 
						
							| 13 | 12 | intnand |  | 
						
							| 14 | 13 | alrimivv |  | 
						
							| 15 |  | opab0 |  | 
						
							| 16 | 14 15 | sylibr |  | 
						
							| 17 |  | 0ss |  | 
						
							| 18 | 16 17 | eqsstrdi |  | 
						
							| 19 | 18 | ex |  | 
						
							| 20 |  | df-1o |  | 
						
							| 21 |  | simpl |  | 
						
							| 22 |  | on0eln0 |  | 
						
							| 23 |  | df-ne |  | 
						
							| 24 | 22 23 | bitrdi |  | 
						
							| 25 | 24 | biimpar |  | 
						
							| 26 |  | onsucss |  | 
						
							| 27 | 21 25 26 | sylc |  | 
						
							| 28 | 20 27 | eqsstrid |  | 
						
							| 29 | 28 | ex |  | 
						
							| 30 | 29 | adantl |  | 
						
							| 31 | 30 | adantl |  | 
						
							| 32 |  | simpr |  | 
						
							| 33 |  | 0lt1o |  | 
						
							| 34 | 33 | a1i |  | 
						
							| 35 | 32 34 | sseldd |  | 
						
							| 36 |  | oaord1 |  | 
						
							| 37 | 36 | ad2antlr |  | 
						
							| 38 | 35 37 | mpbid |  | 
						
							| 39 |  | ssidd |  | 
						
							| 40 |  | oacl |  | 
						
							| 41 |  | eloni |  | 
						
							| 42 | 40 41 | syl |  | 
						
							| 43 |  | eloni |  | 
						
							| 44 | 43 | adantr |  | 
						
							| 45 | 42 44 | jca |  | 
						
							| 46 | 45 | ad2antlr |  | 
						
							| 47 |  | ordeldif |  | 
						
							| 48 | 46 47 | syl |  | 
						
							| 49 | 38 39 48 | mpbir2and |  | 
						
							| 50 |  | simpl |  | 
						
							| 51 | 50 | ad2antlr |  | 
						
							| 52 |  | oa0 |  | 
						
							| 53 | 51 52 | syl |  | 
						
							| 54 | 53 | eqcomd |  | 
						
							| 55 |  | eqidd |  | 
						
							| 56 | 54 55 | jca |  | 
						
							| 57 |  | oveq2 |  | 
						
							| 58 | 57 | eqeq2d |  | 
						
							| 59 |  | fveq2 |  | 
						
							| 60 | 59 | eqeq2d |  | 
						
							| 61 | 58 60 | anbi12d |  | 
						
							| 62 | 61 | rspcev |  | 
						
							| 63 | 35 56 62 | syl2anc |  | 
						
							| 64 |  | fvexd |  | 
						
							| 65 |  | eleq1 |  | 
						
							| 66 | 65 | adantr |  | 
						
							| 67 |  | eqeq1 |  | 
						
							| 68 |  | eqeq1 |  | 
						
							| 69 | 67 68 | bi2anan9 |  | 
						
							| 70 | 69 | rexbidv |  | 
						
							| 71 | 66 70 | anbi12d |  | 
						
							| 72 | 71 | opelopabga |  | 
						
							| 73 | 51 64 72 | syl2anc |  | 
						
							| 74 | 49 63 73 | mpbir2and |  | 
						
							| 75 | 74 | ex |  | 
						
							| 76 |  | ordirr |  | 
						
							| 77 | 43 76 | syl |  | 
						
							| 78 | 77 | adantr |  | 
						
							| 79 | 78 | adantl |  | 
						
							| 80 |  | fndm |  | 
						
							| 81 | 80 | adantr |  | 
						
							| 82 | 81 | adantr |  | 
						
							| 83 | 79 82 | neleqtrrd |  | 
						
							| 84 | 50 | adantl |  | 
						
							| 85 |  | fvexd |  | 
						
							| 86 | 84 85 | opeldmd |  | 
						
							| 87 | 83 86 | mtod |  | 
						
							| 88 | 75 87 | jctird |  | 
						
							| 89 |  | nelss |  | 
						
							| 90 | 88 89 | syl6 |  | 
						
							| 91 | 31 90 | syld |  | 
						
							| 92 | 19 91 | impcon4bid |  | 
						
							| 93 | 8 92 | bitrd |  | 
						
							| 94 |  | ssequn2 |  | 
						
							| 95 | 93 94 | bitrdi |  | 
						
							| 96 | 1 | tfsconcatun |  | 
						
							| 97 | 96 | eqeq1d |  | 
						
							| 98 | 95 97 | bitr4d |  |