Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordered-pair class abstractions (cont.)
opab0
Next ⟩
csbopab
Metamath Proof Explorer
Ascii
Unicode
Theorem
opab0
Description:
Empty ordered pair class abstraction.
(Contributed by
AV
, 29-Oct-2021)
Ref
Expression
Assertion
opab0
⊢
x
y
|
φ
=
∅
↔
∀
x
∀
y
¬
φ
Proof
Step
Hyp
Ref
Expression
1
opabn0
⊢
x
y
|
φ
≠
∅
↔
∃
x
∃
y
φ
2
df-ne
⊢
x
y
|
φ
≠
∅
↔
¬
x
y
|
φ
=
∅
3
2exnaln
⊢
∃
x
∃
y
φ
↔
¬
∀
x
∀
y
¬
φ
4
1
2
3
3bitr3i
⊢
¬
x
y
|
φ
=
∅
↔
¬
∀
x
∀
y
¬
φ
5
4
con4bii
⊢
x
y
|
φ
=
∅
↔
∀
x
∀
y
¬
φ