Metamath Proof Explorer


Theorem opab0

Description: Empty ordered pair class abstraction. (Contributed by AV, 29-Oct-2021)

Ref Expression
Assertion opab0 x y | φ = x y ¬ φ

Proof

Step Hyp Ref Expression
1 opabn0 x y | φ x y φ
2 df-ne x y | φ ¬ x y | φ =
3 2exnaln x y φ ¬ x y ¬ φ
4 1 2 3 3bitr3i ¬ x y | φ = ¬ x y ¬ φ
5 4 con4bii x y | φ = x y ¬ φ