Metamath Proof Explorer


Theorem tgcgrcomimp

Description: Congruence commutes on the RHS. Theorem 2.5 of Schwabhauser p. 27. (Contributed by David A. Wheeler, 29-Jun-2020)

Ref Expression
Hypotheses tkgeom.p
|- P = ( Base ` G )
tkgeom.d
|- .- = ( dist ` G )
tkgeom.i
|- I = ( Itv ` G )
tkgeom.g
|- ( ph -> G e. TarskiG )
tgcgrcomimp.a
|- ( ph -> A e. P )
tgcgrcomimp.b
|- ( ph -> B e. P )
tgcgrcomimp.c
|- ( ph -> C e. P )
tgcgrcomimp.d
|- ( ph -> D e. P )
Assertion tgcgrcomimp
|- ( ph -> ( ( A .- B ) = ( C .- D ) -> ( A .- B ) = ( D .- C ) ) )

Proof

Step Hyp Ref Expression
1 tkgeom.p
 |-  P = ( Base ` G )
2 tkgeom.d
 |-  .- = ( dist ` G )
3 tkgeom.i
 |-  I = ( Itv ` G )
4 tkgeom.g
 |-  ( ph -> G e. TarskiG )
5 tgcgrcomimp.a
 |-  ( ph -> A e. P )
6 tgcgrcomimp.b
 |-  ( ph -> B e. P )
7 tgcgrcomimp.c
 |-  ( ph -> C e. P )
8 tgcgrcomimp.d
 |-  ( ph -> D e. P )
9 1 2 3 4 7 8 axtgcgrrflx
 |-  ( ph -> ( C .- D ) = ( D .- C ) )
10 9 eqeq2d
 |-  ( ph -> ( ( A .- B ) = ( C .- D ) <-> ( A .- B ) = ( D .- C ) ) )
11 10 biimpd
 |-  ( ph -> ( ( A .- B ) = ( C .- D ) -> ( A .- B ) = ( D .- C ) ) )