Description: Congruence commutes on the RHS. Theorem 2.5 of Schwabhauser p. 27. (Contributed by David A. Wheeler, 29-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tkgeom.p | |- P = ( Base ` G ) |
|
tkgeom.d | |- .- = ( dist ` G ) |
||
tkgeom.i | |- I = ( Itv ` G ) |
||
tkgeom.g | |- ( ph -> G e. TarskiG ) |
||
tgcgrcomimp.a | |- ( ph -> A e. P ) |
||
tgcgrcomimp.b | |- ( ph -> B e. P ) |
||
tgcgrcomimp.c | |- ( ph -> C e. P ) |
||
tgcgrcomimp.d | |- ( ph -> D e. P ) |
||
Assertion | tgcgrcomimp | |- ( ph -> ( ( A .- B ) = ( C .- D ) -> ( A .- B ) = ( D .- C ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tkgeom.p | |- P = ( Base ` G ) |
|
2 | tkgeom.d | |- .- = ( dist ` G ) |
|
3 | tkgeom.i | |- I = ( Itv ` G ) |
|
4 | tkgeom.g | |- ( ph -> G e. TarskiG ) |
|
5 | tgcgrcomimp.a | |- ( ph -> A e. P ) |
|
6 | tgcgrcomimp.b | |- ( ph -> B e. P ) |
|
7 | tgcgrcomimp.c | |- ( ph -> C e. P ) |
|
8 | tgcgrcomimp.d | |- ( ph -> D e. P ) |
|
9 | 1 2 3 4 7 8 | axtgcgrrflx | |- ( ph -> ( C .- D ) = ( D .- C ) ) |
10 | 9 | eqeq2d | |- ( ph -> ( ( A .- B ) = ( C .- D ) <-> ( A .- B ) = ( D .- C ) ) ) |
11 | 10 | biimpd | |- ( ph -> ( ( A .- B ) = ( C .- D ) -> ( A .- B ) = ( D .- C ) ) ) |