Metamath Proof Explorer


Theorem tgcgrcomimp

Description: Congruence commutes on the RHS. Theorem 2.5 of Schwabhauser p. 27. (Contributed by David A. Wheeler, 29-Jun-2020)

Ref Expression
Hypotheses tkgeom.p 𝑃 = ( Base ‘ 𝐺 )
tkgeom.d = ( dist ‘ 𝐺 )
tkgeom.i 𝐼 = ( Itv ‘ 𝐺 )
tkgeom.g ( 𝜑𝐺 ∈ TarskiG )
tgcgrcomimp.a ( 𝜑𝐴𝑃 )
tgcgrcomimp.b ( 𝜑𝐵𝑃 )
tgcgrcomimp.c ( 𝜑𝐶𝑃 )
tgcgrcomimp.d ( 𝜑𝐷𝑃 )
Assertion tgcgrcomimp ( 𝜑 → ( ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) → ( 𝐴 𝐵 ) = ( 𝐷 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 tkgeom.p 𝑃 = ( Base ‘ 𝐺 )
2 tkgeom.d = ( dist ‘ 𝐺 )
3 tkgeom.i 𝐼 = ( Itv ‘ 𝐺 )
4 tkgeom.g ( 𝜑𝐺 ∈ TarskiG )
5 tgcgrcomimp.a ( 𝜑𝐴𝑃 )
6 tgcgrcomimp.b ( 𝜑𝐵𝑃 )
7 tgcgrcomimp.c ( 𝜑𝐶𝑃 )
8 tgcgrcomimp.d ( 𝜑𝐷𝑃 )
9 1 2 3 4 7 8 axtgcgrrflx ( 𝜑 → ( 𝐶 𝐷 ) = ( 𝐷 𝐶 ) )
10 9 eqeq2d ( 𝜑 → ( ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) ↔ ( 𝐴 𝐵 ) = ( 𝐷 𝐶 ) ) )
11 10 biimpd ( 𝜑 → ( ( 𝐴 𝐵 ) = ( 𝐶 𝐷 ) → ( 𝐴 𝐵 ) = ( 𝐷 𝐶 ) ) )