Metamath Proof Explorer
Description: Congruence commutes on the RHS. Theorem 2.5 of Schwabhauser p. 27.
(Contributed by David A. Wheeler, 29-Jun-2020)
|
|
Ref |
Expression |
|
Hypotheses |
tkgeom.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
|
|
tkgeom.d |
⊢ − = ( dist ‘ 𝐺 ) |
|
|
tkgeom.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
|
|
tkgeom.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
|
|
tgcgrcomimp.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
|
|
tgcgrcomimp.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
|
|
tgcgrcomimp.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
|
|
tgcgrcomimp.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
|
Assertion |
tgcgrcomimp |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝐷 ) → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐶 ) ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tkgeom.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
tkgeom.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
tkgeom.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
tkgeom.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 5 |
|
tgcgrcomimp.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 6 |
|
tgcgrcomimp.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 7 |
|
tgcgrcomimp.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 8 |
|
tgcgrcomimp.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 9 |
1 2 3 4 7 8
|
axtgcgrrflx |
⊢ ( 𝜑 → ( 𝐶 − 𝐷 ) = ( 𝐷 − 𝐶 ) ) |
| 10 |
9
|
eqeq2d |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝐷 ) ↔ ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐶 ) ) ) |
| 11 |
10
|
biimpd |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝐷 ) → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐶 ) ) ) |