| Step |
Hyp |
Ref |
Expression |
| 1 |
|
thinchom.x |
|- ( ph -> X e. B ) |
| 2 |
|
thinchom.y |
|- ( ph -> Y e. B ) |
| 3 |
|
thinchom.f |
|- ( ph -> F e. ( X H Y ) ) |
| 4 |
|
thinchom.b |
|- B = ( Base ` C ) |
| 5 |
|
thinchom.h |
|- H = ( Hom ` C ) |
| 6 |
|
thinchom.c |
|- ( ph -> C e. ThinCat ) |
| 7 |
1
|
adantr |
|- ( ( ph /\ g e. ( X H Y ) ) -> X e. B ) |
| 8 |
2
|
adantr |
|- ( ( ph /\ g e. ( X H Y ) ) -> Y e. B ) |
| 9 |
|
simpr |
|- ( ( ph /\ g e. ( X H Y ) ) -> g e. ( X H Y ) ) |
| 10 |
3
|
adantr |
|- ( ( ph /\ g e. ( X H Y ) ) -> F e. ( X H Y ) ) |
| 11 |
6
|
adantr |
|- ( ( ph /\ g e. ( X H Y ) ) -> C e. ThinCat ) |
| 12 |
7 8 9 10 4 5 11
|
thincmo2 |
|- ( ( ph /\ g e. ( X H Y ) ) -> g = F ) |
| 13 |
12 3
|
eqsnd |
|- ( ph -> ( X H Y ) = { F } ) |