| Step |
Hyp |
Ref |
Expression |
| 1 |
|
thinchom.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 2 |
|
thinchom.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 3 |
|
thinchom.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 4 |
|
thinchom.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 5 |
|
thinchom.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
| 6 |
|
thinchom.c |
⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |
| 7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑋 ∈ 𝐵 ) |
| 8 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑌 ∈ 𝐵 ) |
| 9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 10 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 11 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝐶 ∈ ThinCat ) |
| 12 |
7 8 9 10 4 5 11
|
thincmo2 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝑋 𝐻 𝑌 ) ) → 𝑔 = 𝐹 ) |
| 13 |
12 3
|
eqsnd |
⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = { 𝐹 } ) |