Metamath Proof Explorer


Theorem thincinv

Description: In a thin category, F is an inverse of G iff F is a section of G (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Hypotheses thincsect.c
|- ( ph -> C e. ThinCat )
thincsect.b
|- B = ( Base ` C )
thincsect.x
|- ( ph -> X e. B )
thincsect.y
|- ( ph -> Y e. B )
thincsect.s
|- S = ( Sect ` C )
thincinv.n
|- N = ( Inv ` C )
Assertion thincinv
|- ( ph -> ( F ( X N Y ) G <-> F ( X S Y ) G ) )

Proof

Step Hyp Ref Expression
1 thincsect.c
 |-  ( ph -> C e. ThinCat )
2 thincsect.b
 |-  B = ( Base ` C )
3 thincsect.x
 |-  ( ph -> X e. B )
4 thincsect.y
 |-  ( ph -> Y e. B )
5 thincsect.s
 |-  S = ( Sect ` C )
6 thincinv.n
 |-  N = ( Inv ` C )
7 1 thinccd
 |-  ( ph -> C e. Cat )
8 2 6 7 3 4 5 isinv
 |-  ( ph -> ( F ( X N Y ) G <-> ( F ( X S Y ) G /\ G ( Y S X ) F ) ) )
9 1 2 3 4 5 thincsect2
 |-  ( ph -> ( F ( X S Y ) G <-> G ( Y S X ) F ) )
10 9 biimpa
 |-  ( ( ph /\ F ( X S Y ) G ) -> G ( Y S X ) F )
11 8 10 mpbiran3d
 |-  ( ph -> ( F ( X N Y ) G <-> F ( X S Y ) G ) )